

WHAT'S IN A NAME?

Unique Asset Identification using USNG Coordinates

Elisabetta T. DeGironimo, GISP

PROJECT BACKGROUND

Mohawk Valley Water Authority

About the Project

- The Mohawk Valley Water Authority (MVWA)
 - Serves the Greater Utica Area in Central NY
 - Serves a population of 130,000 (about 40k customers)
 - 700+ miles of pipe, 28 storage tanks, 21 pump stations
 - Produces an average of 19 MGD
- Mapping & Modeling Modernization Project (M³)
 - GIS Update
 - Workflow
 - Geodatabase redesign
 - Hydraulic Model Update
 - Move from all-pipe to all-pipe/valve/hydrant

M³ Project Component

- New Unique Asset Identifiers
 - Unique identifier ("name") required for various systems such as GIS, CMMS, WOMS, or hydraulic models
 - At project onset, only hydrants had "meaningful" names

M³ Project Component

- New Unique Asset Identifiers
 - Unique identifier ("name") required for various systems such as GIS, CMMS, WOMS, or hydraulic models
 - At project onset, only hydrants had "meaningful" names

 For this discussion, "asset" = fixed, field-based asset such as hydrants & valves

Challenge

 Update water asset identifiers to be meaningful / logical unique names

- The MVWA has 22 feature classes in its water network geodatabase
 - Lines (3)
 - Facilities (11)
 - Features (8)

MVWA WaterNet Feature Classes

- Lines
 - Pipes used in the transmission and distribution of water
 - Line Feature Classes (3)
 - MainLine
 - ServiceLine
 - VirtualLink

MVWA WaterNet Feature Classes

- Facilities
 - Water network point facilities and junctions
 - Facility Feature Classes (11)
 - Hydrant
 - Storage
 - MainLineValve
 - ServiceLineValve
 - SystemControlValve
 - PressureRegulatingValve

- SystemMeter
- Pump
- CurbBox
- SamplingStation
- Fitting

MVWA WaterNet Feature Classes

Features

- Spatial features that support the water network but do not transmit or control the flow of water
- Feature Feature Classes (8)
 - Casing
 - AboveGroundFacility
 - UnderGroundFacility
 - Equipment
 - SCADAsensor
 - ServiceZone
 - MapScan
 - RedLine

ASSET NAMING OPTIONS

Field-based assets

Identifier / Name Characteristics

- Required
 - Unique
- Desired
 - Meaningful
 - Hierarchical
 - Parsable
 - Same character length

Asset Naming Schemes

- Numbering
 - Random
 - Sequential
- Hierarchical
 - Ex. site, building, asset type, asset number = MPHP04
- Spatial / Geographical
 - Grid-based
 - Coordinate-based
- Hybrid
 - Combination of schemes

Hydrant Naming Thoughts

- Deserve a meaningful name, sure they're not as big as a building, but they're above ground ☺
- Need to communicate hydrant status information internally & with many fire departments and DPWs
- Experimented with various naming schemes
 - Including using an abbreviation for muni & street with nearest address number
 - Ex. UTGEN00258, MACAV15824

Final Selection

- Street / address-based worked ok for hydrants, but wasn't ideal
- Heard a presentation about Hurricane Katrina response at the NYS GIS Conference in Lake Placid and started to explore using the USNG
- Using the USNG was a solid, logical choice...

USNG

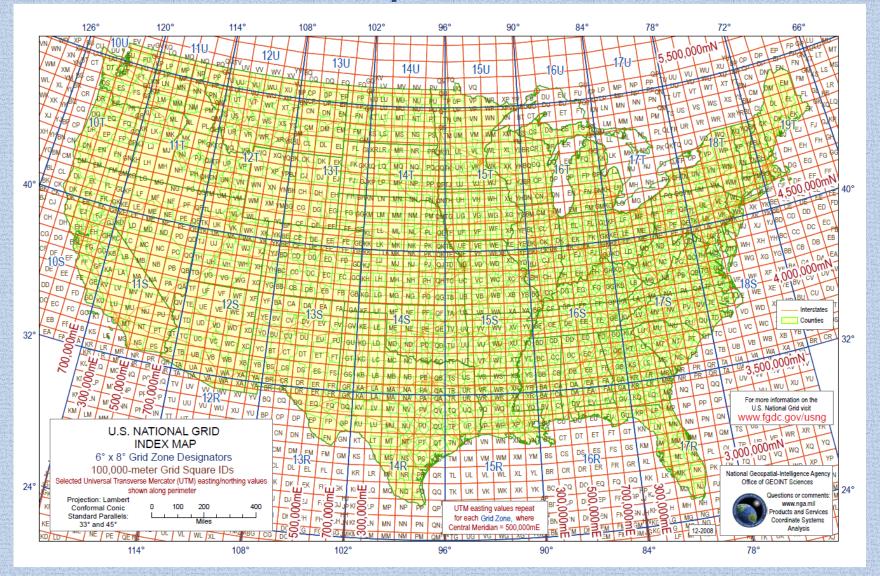
United States National Grid

What is the USNG?

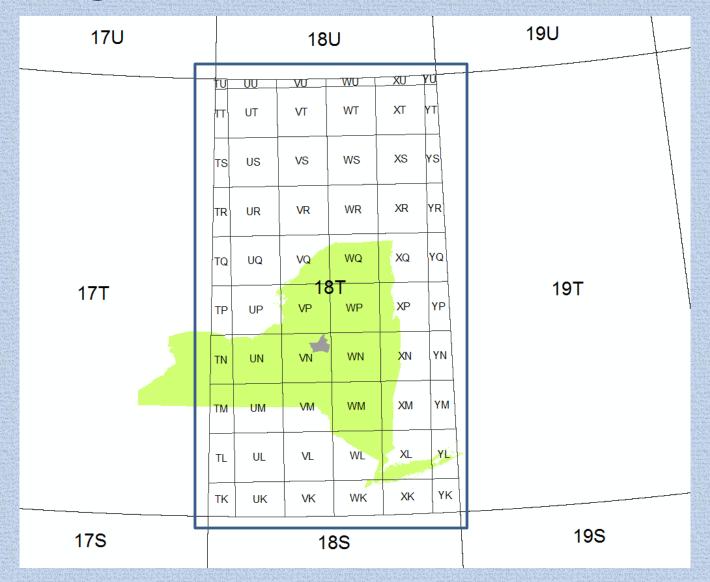
- Seamless, standardized alphanumeric point referencing system
- Universal coordinate system derived from UTM
- MGRS equivalent (NATO)
- Developed by FGDC
- Preferred grid for NSDI applications

Why use the USNG?

- Single alphanumeric string
 - Ex. 18TVN80797206
- Navigable
- Universal
- Hurricane Katrina
 - Talbot Brooks

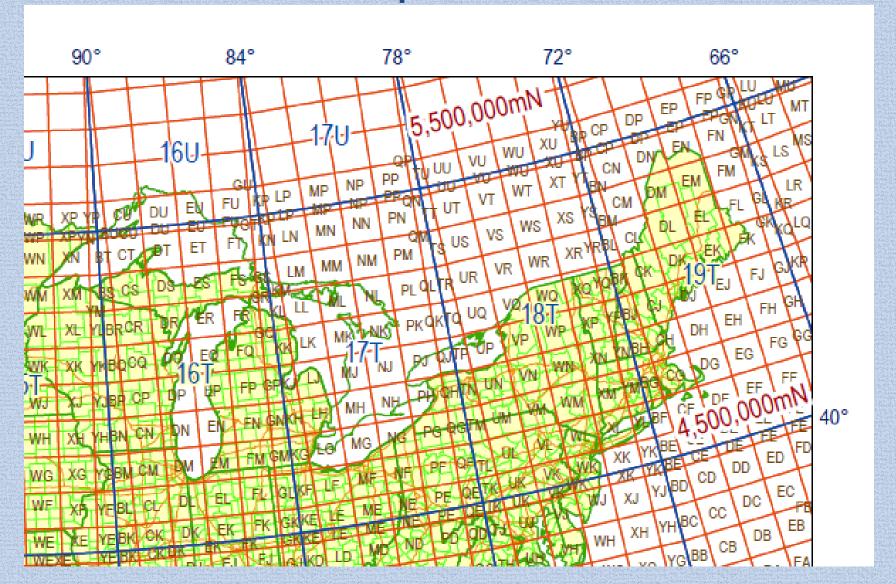

The 3 USNG Components

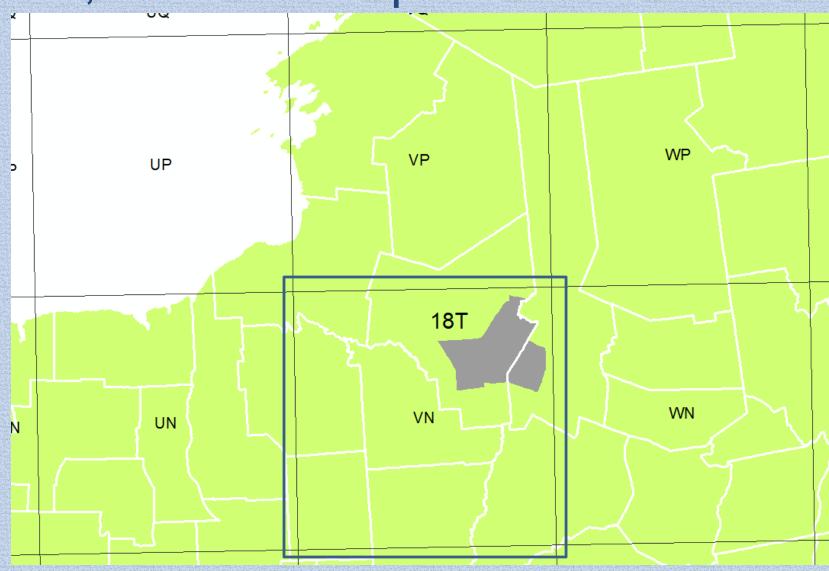
- 1. GZD Grid Zone Designation
- 2. 100,000 Meter Square Identification
- 3. Grid Coordinates


The 3 USNG Components

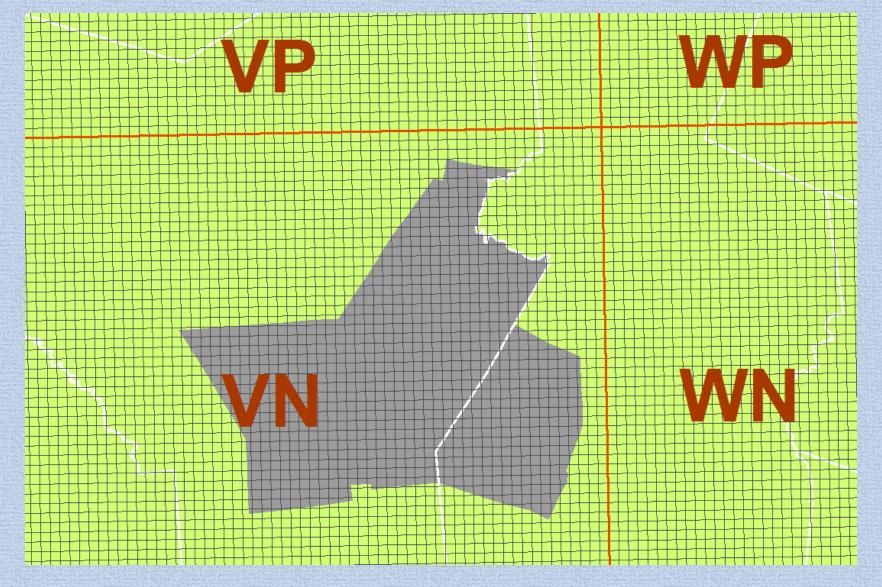
- 1. GZD Grid Zone Designation
 - The US is divided into 6-degree longitudinal zones designated by a number, and 8-degree latitudinal bands designated by a letter

USNG Index Map


GZD 18T

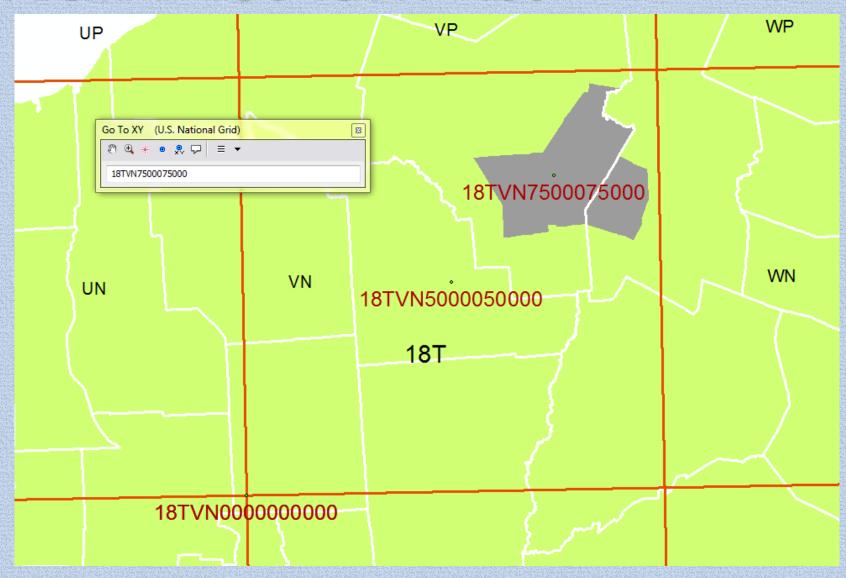

The 3 USNG Components

- 1. GZD Grid Zone Designation
 - The US is divided into 6-degree longitudinal zones designated by a number, and 8-degree latitudinal bands designated by a letter
- 2. 100,000 Meter Square Identification
 - Each GZD is gridded with 100,000 meter squares with a GZD-unique 2-letter designation


USNG Index Map

100,000 Meter Square VN

1 km Grid within VN


The 3 USNG Components

- 1. GZD Grid Zone Designation
 - The US is divided into 6-degree longitudinal zones designated by a number, and 8-degree latitudinal bands designated by a letter
- 2. 100,000 Meter Square Identification
 - Each GZD is gridded with 100,000 meter squares with a GZD-unique 2-letter designation
- 3. Grid Coordinates
 - Point positions within the 100,000m square are given UTM grid coordinates (easting then northing)
 - An equal number of digits is used for each position
 - The number of digits is determined by the desired precision

USNG Grid Coordinate Precision Levels

USNG Level	Coord Digits
100,000 m	0
10,000 m	2
1,000 m	4
100 m	6
10 m	8
1 m	10
0.1 m	12

ArcMAP "Go To XY" Tool

1 km USNG Coord = 18TVN7575

1m USNG Coord over Hydrant 18TVN7552775673 18TVN7500075000

USNG In Use

Smart phone apps

GPSts

usngmarker.org

USNG In Use

Smart phone apps

GPSts

usngmarker.org

USNG ASSET NAMING

Planning

Using USNG for Asset Naming

- Opportunities
 - Since service area is within same 100km grid, MVWA could truncate first 5 digits of USNG coordinate (18T VN)
- Challenges
 - Only good to meter level without modifications
 - Sometimes there are multiple features within a square meter
 - Needed to extend USNG to the decimeter level

1m USNG Coord over Hydrant FVN7552775673 18TVN7500075000

1m USNG Coord over Hydrant 55277567 18TVN7500075000

Original USNG Naming Plan

- Add prefix to differentiate feature type
- Extend USNG to get to decimeter level

Original USNG Naming Plan

MVWA WaterNet Feature	USNG Level	Coord Digits	Prefix	Total Length
Hydrant	1 m	10	Н	11
Storage	10 m	8	Т	9
MainLineValve	0.1 m	12	MV	14
ServiceLineValve	0.1 m	12	SV	14
SystemControlValve	0.1 m	12	CV	14
PressureRegulatingValve	0.1 m	12	PV	14
SystemMeter	0.1 m	12	SM	14
Pump	0.1 m	12	Р	13
CurbBox	0.1 m	12	С	13
SamplingStation	100 m	6	SS	8
Fitting	0.1 m	12	F	13

Original USNG Naming Plan

- Add prefix to differentiate feature type
- Extend USNG to get to decimeter level
 - Issue
 - Determined that this did not produce unique names for our features
 - Possible Solutions
 - Do we shift coordinates so names are unique?
 - Do we extend the USNG in some other way?

- Decided that it was ok that multiple features could occupy a square meter
- Checked USNG coordinate for uniqueness & added a suffix
 - "-0" if unique
 - "-0", "-1", "-2", etc. if not unique
- Separated prefix with a "-" for legibility
- Separated coordinates with a "-" for legibility

- Examples
 - MV-33452-14903-1 (1m for Main Line Valves)
 - H-167-028-0 (100m for Hydrants)
- Benefits
 - Could "shorten" asset names
 - H6809208332 became H-680-083-0
 - Asset names are easier to communicate
 - Since the vast majority of MVWA hydrants (>92%) do not have duplicates closer than 100m, most suffixes can eliminated when communicating

MVWA WaterNet Feature	USNG Level	Coord Digits	Prefix	Total Digits
Hydrant	100 m	6	Н	11
Storage	1000 m	4	Т	9
MainLineValve	1 m	10	MV	16
ServiceLineValve	10 m	8	SV	14
SystemControlValve	10 m	8	CV	14
PressureRegulatingValve	10 m	8	PV	14
SystemMeter	100 m	6	SM	12
Pump	1 m	10	Р	15
CurbBox	1 m	10	С	15
SamplingStation	1000 m	4	SS	10
Fitting	1 m	10	F	15

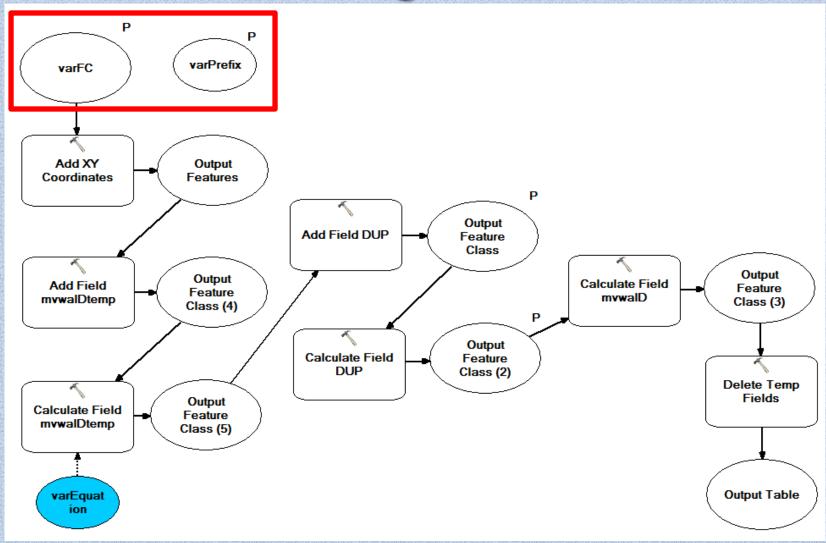
MVWA WaterNet Feature	Original USNG Level	Original Length	Revised USNG Level	Revised Length
Hydrant	1 m	11	100 m	11
Storage	10 m	9	1000 m	9
MainLineValve	0.1 m	14	1 m	16
ServiceLineValve	0.1 m	14	10 m	14
SystemControlValve	0.1 m	14	10 m	14
PressureRegulatingValve	0.1 m	14	10 m	14
SystemMeter	0.1 m	14	100 m	12
Pump	0.1 m	13	1 m	15
CurbBox	0.1 m	13	1 m	15
SamplingStation	100 m	8	1000 m	10
Fitting	0.1 m	13	1 m	15

USNG ASSET NAMING

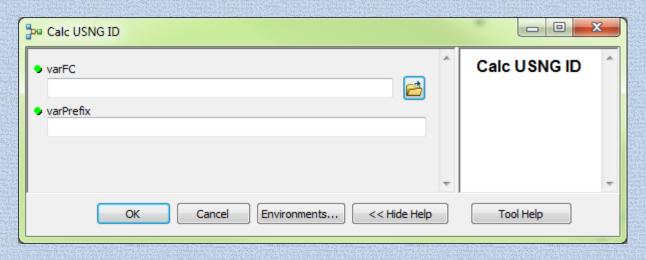
Implementation

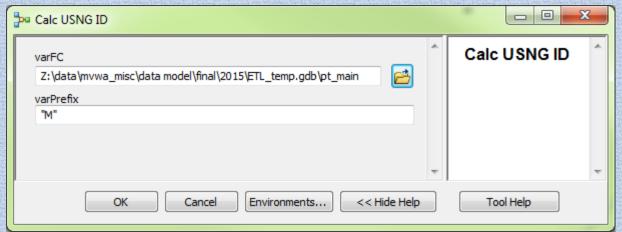
USNG Naming Process

- Data needs to be in UTM, NAD-83 to create USNG asset names
- Create asset ID field = String, 20

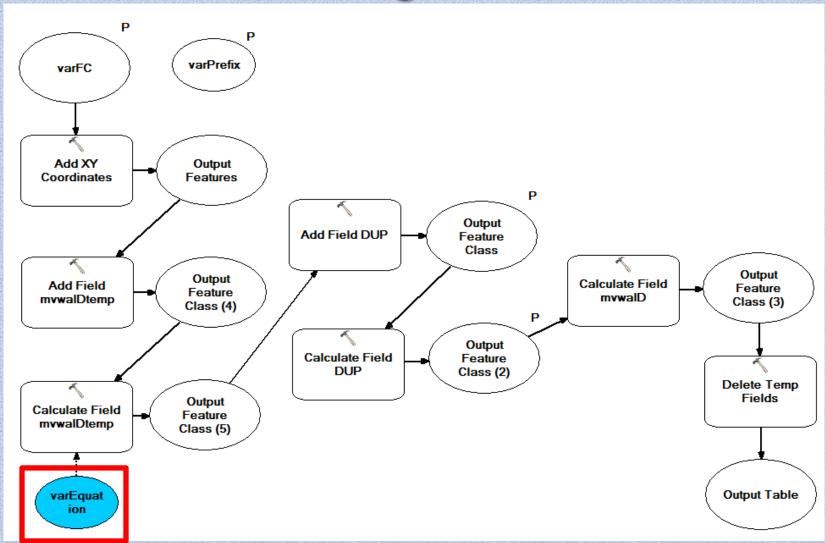

USNG Naming with Lines & Polygons

- Since USNG is a Point-based referencing system, points are needed...
 - For Line Features Find midpoint (use Feature to Point (inside option) to create temp point fc)
 - For Polygon Features Find centroid (use Feature to Point (inside option) to create temp point fc)
- Important that line and polygon feature classes have a unique temp ID before running Feature to Point so that USNG IDs can be joined to original feature

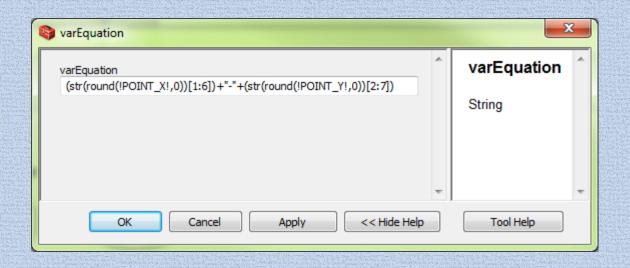

USNG Naming Process


- Add XY Coordinates (creating POINT_X & POINT_Y fields)
- Use POINT_X & POINT_Y to create USNG coordinate (in tempID field)
- Check for duplicates & create duplicate field
- Create final asset name using prefix, USNG coordinate, & duplicate suffix
- Clean up temp fields

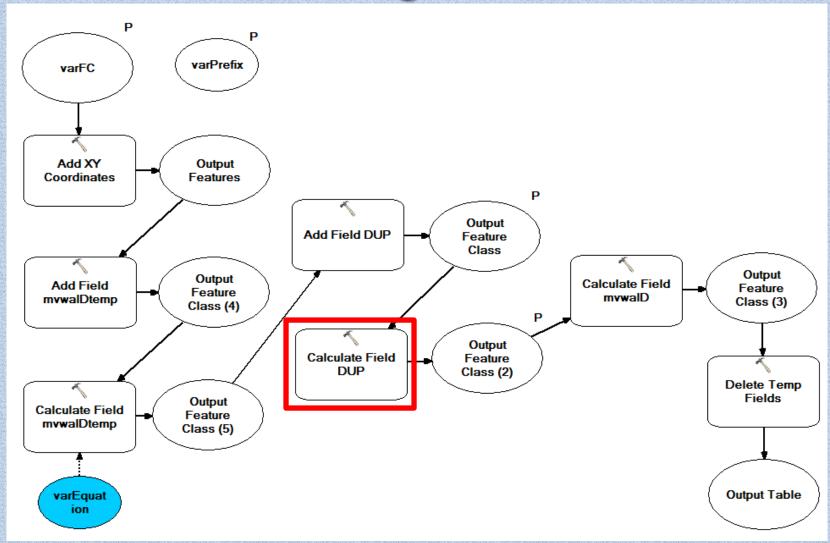
Model Builder Diagram



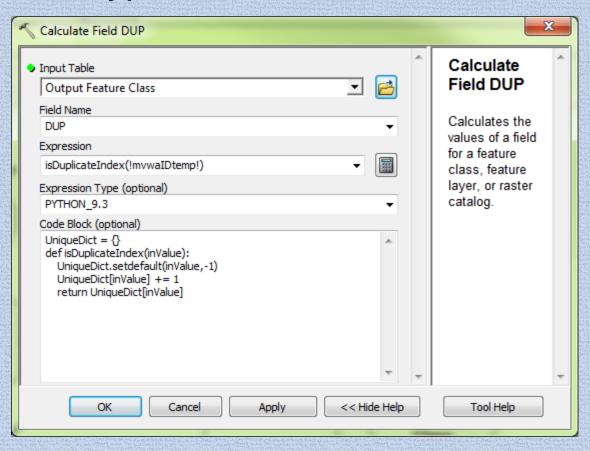
Run Model



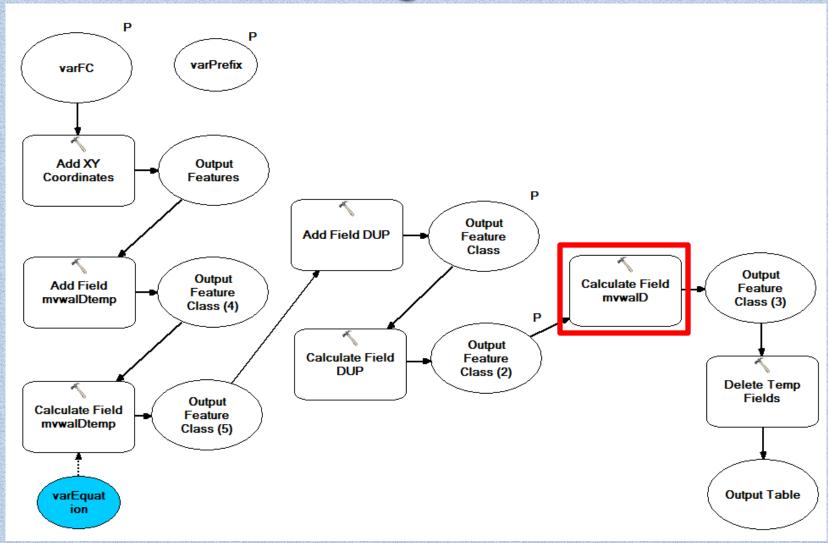
Model Builder Diagram



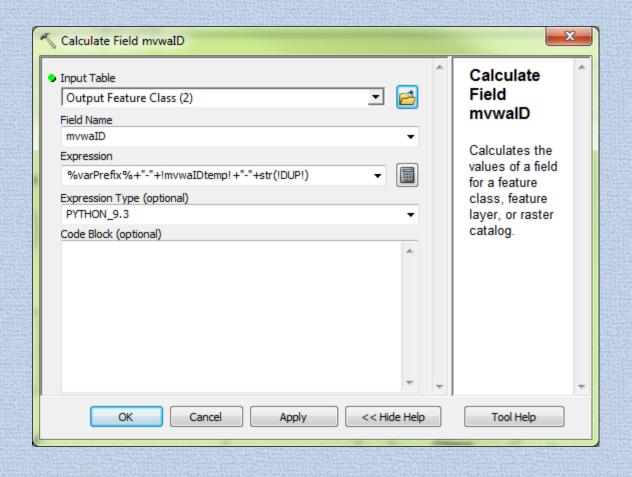
Extract USNG Coordinate

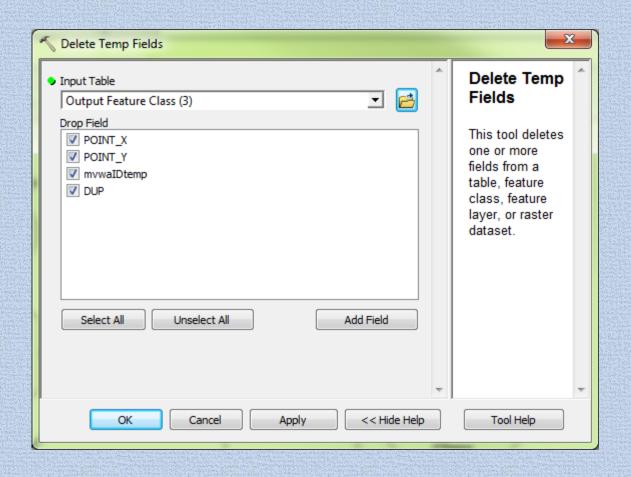

Ac	curacy	USNG Digits	varEquation
	100 m	6	(str(round((!POINT_X!*.01),0))[1:4])+"-"+(str(round((!Point_Y!*.01),0))[2:5])
	10 m	8	(str(round((!POINT_X!*.1),0))[1:5])+"-"+(str(round((!Point_Y!*.1),0))[2:6])
	1 m	10	(str(round(!POINT_X!,0))[1:6])+"-"+(str(round(!Point_Y!,0))[2:7])
	0.1 m	12	(str(round((!POINT_X!*10),0))[1:7])+"-"+(str(round((!Point_Y!*10),0))[2:8])

Model Builder Diagram



Find Duplicates


DUP field is type Short


Model Builder Diagram

Create USNG Asset Name

Clean Up!

Result

Table										
M	Main Line ×								×	
Г	OBJECTID *	SHAPE	MVWA ID	Municipality	Install Year	Subtype	Street	Main Diameter	Main Material	
Г	8556	Polyline	M-70278-73678-0	Whitestown	2003	Supply Main	Stone Road	12"	Ductile Iron Cement	
	8557	Polyline	M-70296-73731-0	Whitestown	2003	Supply Main	Westmoreland Road	12"	Ductile Iron Cement	Ţ-U-1
Г	8558	Polyline	M-70281-73729-0	Whitestown	2003	Supply Main	Stone Road	12"	Ductile Iron Cement	Ţ.
	9155	Polyline	M-82000-75573-0	Deerfield	2003	Supply Main	Horatio Street	8"	Ductile Iron Cement	Ţ.
Г	9314	Polyline	M-79842-66685-0	New Hartford (T)	2003	Supply Main	Pebble Creek Lane	8"	Ductile Iron Cement	Ţ.
Г	9318	Polyline	M-80033-66624-0	New Hartford (T)	2003	Supply Main	Augusta Drive	8"	Ductile Iron Cement	Ţ.
Г	9468	Polyline	M-80205-66538-0	New Hartford (T)	2003	Supply Main	Augusta Drive	8"	Ductile Iron Cement	Ţ.
Г	11196	Polyline	M-74238-74032-0	Whitestown	2003	Supply Main	Matts Drive	6"	Ductile Iron Cement	Ţ.
Г	11197	Polyline	M-74152-74018-0	Whitestown	2003	Supply Main	George Avenue	6"	Ductile Iron Cement	Ţ.
Г	11198	Polyline	M-74216-73945-0	Whitestown	2003	Supply Main	Bretts Way	6"	Ductile Iron Cement	Ţ.
Г	11199	Polyline	M-74300-73949-0	Whitestown	2003	Supply Main	Bretts Way	8"	Ductile Iron Cement	Ţ. ,
Г	11200	Polyline	M-74239-73898-0	Whitestown	2003	Supply Main	Bretts Way	8"	Ductile Iron Cement	Ţ.
Г	11291	Polyline	M-77701-76529-0	Marcy	2003	Supply Main	State Highway 49	8"	Ductile Iron Cement	Ţ.
Г	11339	Polyline	M-71729-73171-0	Whitestown	2003	Supply Main	Judd Road Extension	12"	Ductile Iron Cement	Ţ
	11340	Polyline	M-71365-73505-0	Whitestown	2003	Supply Main	Driveway	12"	Ductile Iron Cement	Ţ
	11441	Polyline	M-80230-66460-0	New Hartford (T)	2003	Supply Main	Augusta Drive	8"	Ductile Iron Cement	Ţ
Г	11442	Polyline	M-80274-66411-0	New Hartford (T)	2003	Supply Main	Kingfisher Lane	8"	Ductile Iron Cement	Ţ
Г	11556	Polyline	M-77412-79830-0	Marcy	2003	Supply Main	Brian Street	6"	Ductile Iron Cement	Ī,
	11557	Polyline	M-77334-79715-0	Marcy	2003	Supply Main	Corey Court	8"	Ductile Iron Cement	Ţ
Г	11562	Polyline	M-77500-79668-0	Marcy	2003	Supply Main	Shelley Drive	8"	Ductile Iron Cement	1
	11565	Polyline	M-77092-79545-0	Marcy	2003	Supply Main	Brooks Boulevard	6"	Ductile Iron Cement	1
Г	11566	Polyline	M-77166-79480-0	Marcy	2003	Supply Main	Shelley Drive	8"	Ductile Iron Cement	Ī,
	11652	Polyline	M-77248-79602-0	Marcy	2003	Supply Main	Corey Court	8"	Ductile Iron Cement	Ţ.
Г	12769	Polyline	M-71184-78298-0	Whitestown	2003	Supply Main	Paradise Lane	8"	Ductile Iron Cement	ī, I
Г	12788	Polyline	M-71486-78285-0	Whitestown	2003	Supply Main	Cider Street	8"	Ductile Iron Cement	Ī,
	12817	Polyline	M-77161-79484-0	Marcy	2003	Supply Main	Brooks Boulevard	8"	Ductile Iron Cement	•
	12859	Polyline	M-77379-79777-0	Marcy	2003	Supply Main	Shelley Drive	8"	Ductile Iron Cement	1
	12860	Polyline	M-77379-79777-1	Marcy	2003	Supply Main	Shelley Drive	8"	Ductile Iron Cement	· +
Ī		- 11	†		-			1	•	
1										
'	4 4 () → →1	(0 out of	13481 Selected)						
MAP_SCANS pt_map_scan_singleprt Main Line temp_map_scan_singleprt pt_virtual pt_virtual 1										

Future Enhancements

- Incorporate look-up table so that model automatically determines prefix and coordinate length based on feature class
- Incorporate into Attribute Assistant so that USNG ID is automatically generated when features are added

Questions?

For additional questions, scripts, & updates to this USNG Asset Naming Project, please contact:

Elisabetta (Lis/Beth) DeGironimo, GISP 315.792.0353 (o) edegironimo@mvwa.us