

How Geographic Information System (GIS) Data and Application Tools Can Be Used to Inform Renewable Energy Decisions: A Case Study

Katie Budreski and David Healy Presented at 2015 NY GeoCon October 30, 2015

## **Background**

## Massachusetts Community Energy Strategies Program (2013 – 2015)

- Main objective: develop clean energy roadmap for communities
- Stone was one of two consultants who won the competitive bid to work on the project
- Conducted the GIS inventory of potential clean energy solutions
- Meister Consulting Group was other consultant that facilitated the public meetings, working group progress, and road map development
- Worked closely with MassCEC, towns, and Meister

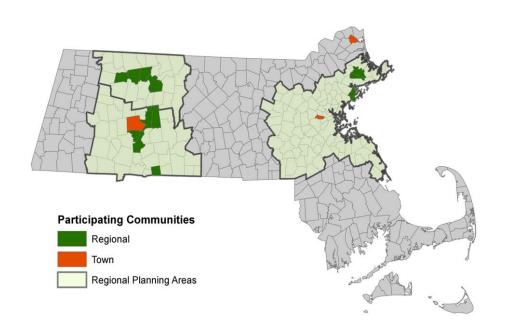


#### Basics:

- Quasi-Public Agency
- Created in 2008 by Governor Deval Patrick's Green Jobs Act
- Funded by the Renewable Energy Trust Fund (systems benefit charge paid by electric ratepayers)

#### Mission:

- Accelerate clean energy technologies, companies and projects
- Create high-quality jobs and long-term economic growth
- Support municipal clean energy projects
- Invest in residential and commercial renewable energy installations
- Cultivate a robust marketplace for innovation






## A Collaboration of MA CEC, DOER, and Local Government

#### **GOALS:**

- Identify and implement an optimal mix of existing strategies and incentives
- Provide educational opportunities
- Promote ongoing ownership and implementation of clean energy goals.







### **Assumptions**

"Each community is unique. Renewable energy projects that work for one community may not work for another, and this program will help these communities find the best projects to fit their cities and towns,"

- MassCEC CEO Alicia Barton.





## Assumptions

Distribution and extent of clean energy opportunities can be realized through **GIS based spatial analysis** of infrastructure, and siting criteria for various clean energy technologies





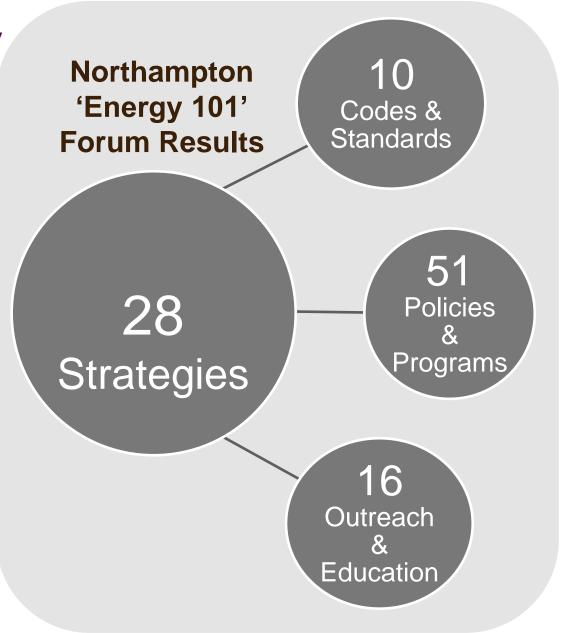
Step 2:

Develop inventory of potential projects

Step 1: Explore local clean energy goals Step 3:

Review inventory and narrow clean energy goals

Step 4:


Finalize Clean Energy Roadmap





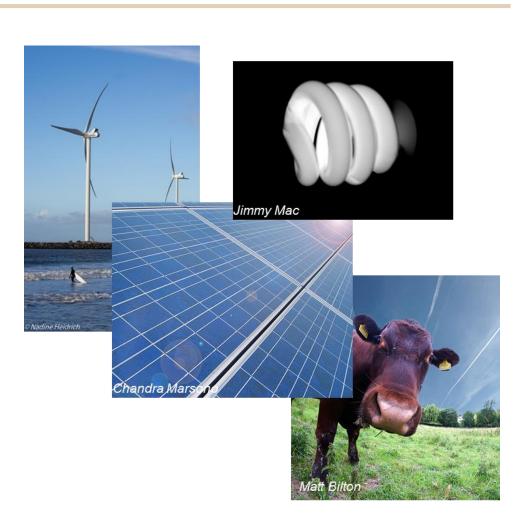
Step 1: Explore Local Clean Energy Goals

- 'Energy 101' public forum
- Brainstorm to develop full listing of potential strategies, codes & standards, policies & programs
- Clean Energy Working Group helps guide process and narrow goals








## Step 2. Develop inventory of potential clean energy projects

#### **GIS-based Evaluation:**

- Energy Efficiency
- EV Charging Stations
- Other Community Specific Analyses…

## GIS-based Site Suitability Analyses:

- Large Ground Mounted Solar PV
- Wind
- Solar Canopies
- Anaerobic Digestion





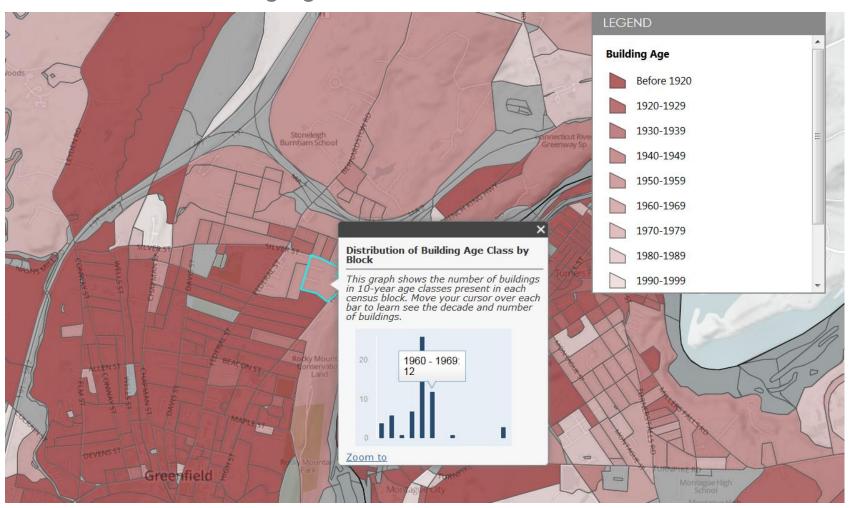


#### **GIS-Based Evaluation**

Use GIS data to qualitatively understand clean energy opportunities

Renter vs. Owner Occupied Housing: US Census








#### **GIS-Based Evaluation**

Use GIS data to qualitatively understand clean energy opportunities

Distribution of building age: Assessor Data







#### **GIS-Based Evaluation**

## Use GIS data to qualitatively understand clean energy opportunities

• Distribution of building age and land use class: Assessor Data

| Time Period        | Commercial | Industrial | Municipal | Open Space | Other | Residential | State | <b>Grand Total</b> |
|--------------------|------------|------------|-----------|------------|-------|-------------|-------|--------------------|
| Before 1920        | 87         | 3          | 2         | 163        | 321   | 2,632       |       | 3,208              |
| 1930-1939          | 11         |            |           |            | 19    | 146         |       | 176                |
| 1940-1949          | 10         | 2          |           | 1          | 40    | 256         |       | 309                |
| 1950-1959          | 15         | 1          | 1         |            | 20    | 508         |       | 545                |
| 1960-1969          | 17         | 2          |           |            | 51    | 630         |       | 700                |
| 1970-1979          | 28         | 8          |           |            | 41    | 274         |       | 351                |
| 1980-1989          | 16         | 17         |           | 15         | 69    | 454         |       | 571                |
| 1990-1999          | 12         | 11         |           | 19         | 44    | 406         |       | 492                |
| 2000-2009          | 12         | 6          |           | 12         | 77    | 245         |       | 352                |
| 2010-present       |            |            |           | 1          |       | 6           |       | 7                  |
| Unknown            | 21         |            | 17        | 37         | 16    | 16          | 5     | 112                |
| <b>Grand Total</b> | 241        | 55         | 21        | 252        | 716   | 5,850       | 5     | 7,140              |



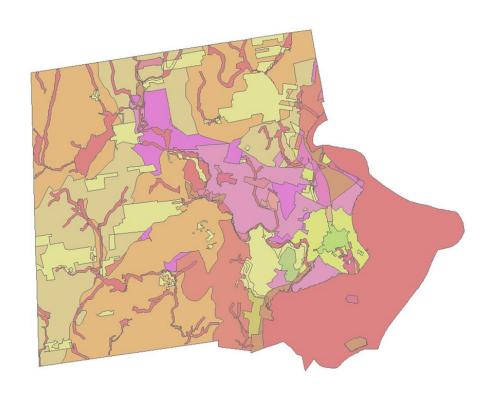


#### **GIS-Based Evaluation**

### Use GIS data to qualitatively understand clean energy opportunities

 Estimate of Energy Intensity: Assessor data (building use, age, sq.ft) and US Energy Information Admin



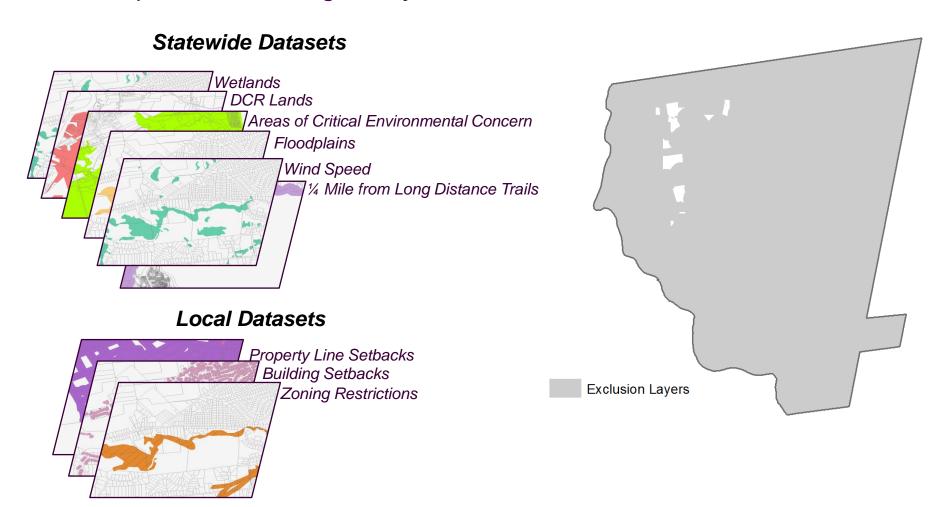





### GIS-Based Suitability Analyses

# Identify and characterize areas that meet minimum threshold criteria

- Exclusion layers
- Concern layers
- Community-specific setbacks for the exclusion layers, concern layers, parcel boundaries and buildings
- Add additional zoning or conserved land restrictions
- Identify minimum parcel size requirements



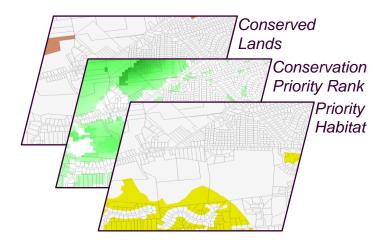





GIS-Based Suitability Analyses: Wind Site Selection Example

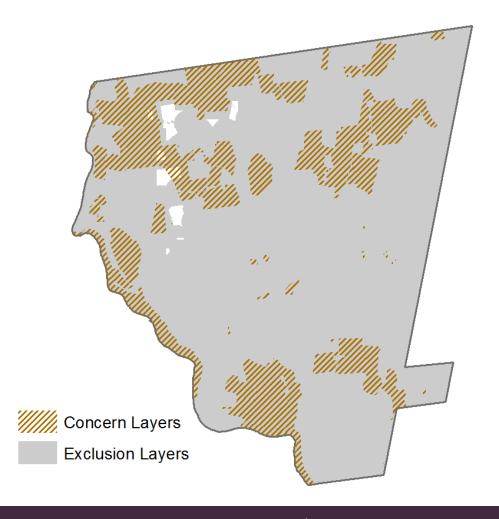
Exclusions: Layers that clearly indicate incompatibility based on minimum technical requirements or regulatory status








## Solar Site Selection Example

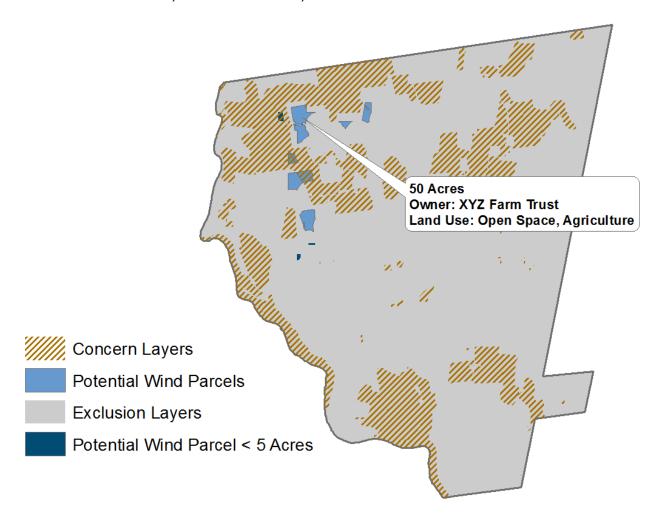

Concerns: Layers that do not clearly indicate incompatibility but whose presence and selected attributes will inform decisions.

#### Statewide Datasets



#### Local Datasets



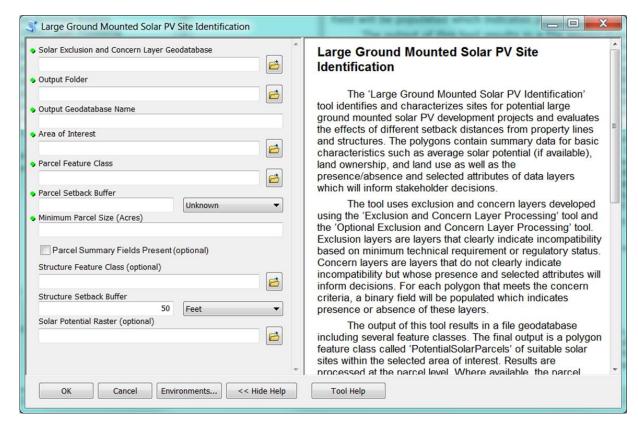







Solar Site Selection Example

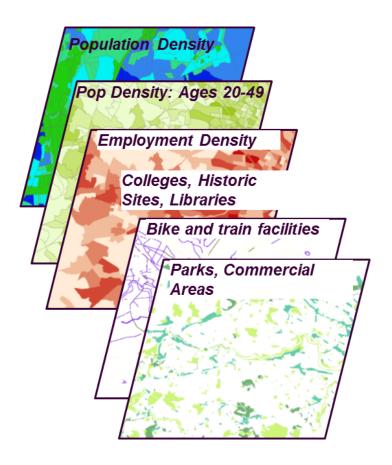
Combine Exclusions, Concerns, and Minimum Parcel Cut-off

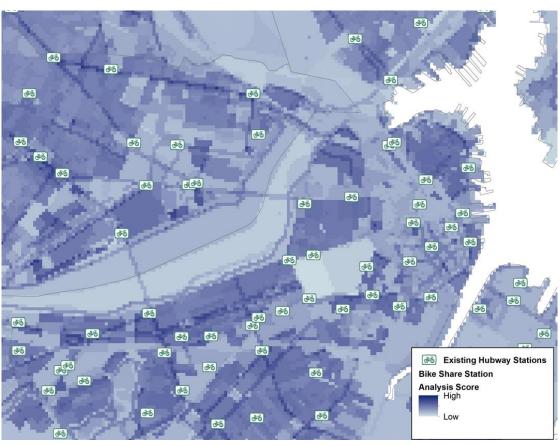







# Using **GIS tools** for Clean Energy Site Evaluation and Suitability allows for:


- Repeatability
- Flexibility
  - Use local data input
  - Alter setback distances
- Iterative analyses
  - Test multiple scenarios

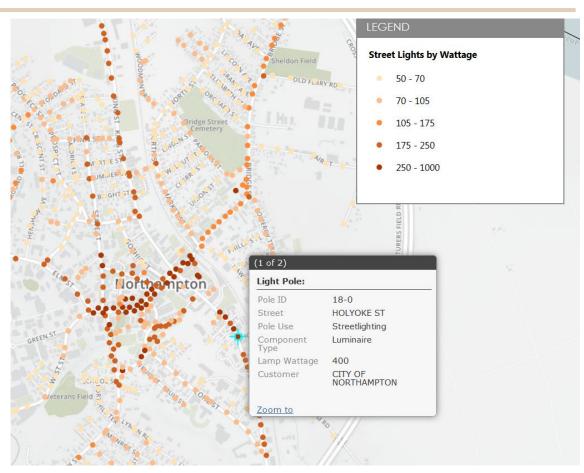







Additional GIS Analyses: Statewide Bike Share Station Suitability










## Additional GIS Analyses: Northampton Street Light Retrofit Program

- Connected spreadsheet inventory to pole locations
- Display Current Wattage
- Target LED Upgrade Locations



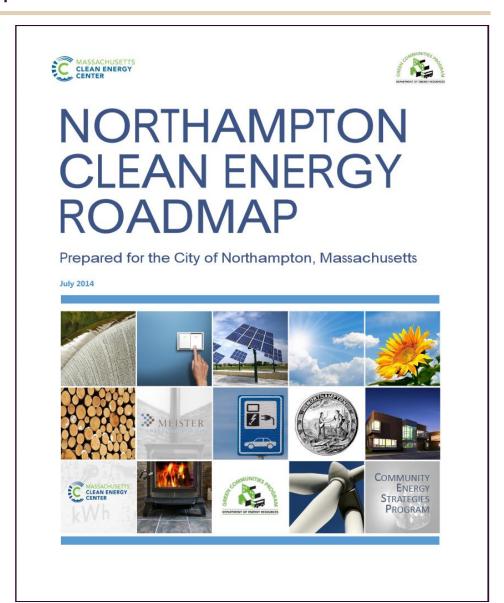




### Step 3: Review Inventory and Narrow Clean Energy Goals

- Clean Energy Working Group reviews inventory
- 'Energy 201' public forum to narrow goals and establish priorities
- 'Energy 201' public forum provides education about technologies of interest
- Revise analyses, where needed








### Step 4: Finalize Clean Energy Roadmap

- Final site suitability analyses compiled and presented
- Actual project options developed
- Interactive web maps of results to share with public

http://mapping.masscec.com.s3.amazon aws.com/CESP/ROADMAPS/Northampt on.pdf







#### **Actual Project Options**

## **Strategies**

- Objectives
- Description
- Benefits & Risks
- Financial Costs & Benefits
- Next Steps
- Resources

# STRATEGY 1. DEVELOP COMMUNITY SOLAR PROJECT

A Northampton community solar project will allow residents that are unable to own their own solar installations to purchase locally produced solar electricity, saving them money and contributing to community renewable energy goals.

#### **OBJECTIVES**



Coordinate the development of a community solar project for Northampton residents.



Save participating residents money on their electricity bills.



Reduce community greenhouse gas emissions and promote the development of large-scale solar

#### BACKGROUND AND STRATEGY DESCRIPTION

Many Northampton residents are unable to take advantage of the growing Massachusetts solar market because they either rent their residences or because their homes are unsuitable for solar. Community solar initiatives are one way to allow these residents to take advantage of low-cost solar power. Under the community solar model, a developer builds a PV system at an off-site location and participating residents agree to purchase energy from that system, typically at a discount compared to electricity from traditional electricity sources. There are a range of business models, such as direct ownership by local investors or development and financing by a third-party entity. Current Massachusetts net metering regulations are some of the most favorable in the nation for community solar projects and several municipalities have already established programs with the support of private developers.

As part of this strategy, Northampton staff will work with local volunteers to develop a community solar program, which will:

- Evaluate potential community solar ownership models.
- Identify potential city-owned or privately-owned sites within Northampton to support a community solar installation.
- Recruit potential community solar program participants.
- Assist with the procurement of a community solar program vendor.

With prices for solar installations at all-time lows and new state incentive programs that will favor community solar installations, a coordinated effort to develop a community solar initiative could significantly benefit the Northampton community.





### Step 4: Finalize Clean Energy Roadmap

#### Northampton Clean Energy Map Gallery

Back to Roadmap

About the Maps

These maps were created as companions to the Clean Energy Roadmap. Each map features multiple layers that correspond to specific strategies to increase local renewable energy generation, renewable heating and cooling, building energy efficiency,

#### **Map Categories**



Start Here





Community Information





**Buildings and Efficiency** 

#### links to the corresponding sections of the Clean Energy Roadmap. Simply select a map to open!

Additional Resources

and sustainable transportation. Each map layer has a brief description with

**CESP Northampton Website** 

DOER Green Communities Division

Sustainable Northampton

#### f 🗾 in 🖾 🚼 🤇 0

#### About the Community Energy Strategies Pilot Program

The Community Energy Strategies Pilot Program (CESP) is an initiative developed by the Massachusetts Clean Energy Center in collaboration with the Department of Energy Resources Green Communities Division. The program, delivered in partnership with local officials and community volunteers, helps communities identify and develop strategies for implementing the mix of clean energy projects and incentives best suited to address local interests, needs, and opportunities for clean energy development across all sectors.





energyplanning@masscec.com





# **Community Energy Strategies Pilot Program: Conclusions**

- Community focus
- Opportunities for public involvement
- Develop statewide datasets for communities
- Tools give communities flexibility to use their own data



## **Questions**

David Healy 802.229.1879 dhealy@stone-env.com Katie Budreski 802.229.1870 kbudreski@stone-env.com