historical map polygon and feature extractor

mauricio giraldo arteaga NYPL Labs @mgiraldo

NYGeoCon 2013

background

~120k polygons produced in three years by staff and volunteers

not paper-colored

not paper-colored

completely enclosed by black lines

not paper-colored

completely enclosed by black lines

dashed lines are not walls

not paper-colored

completely enclosed by black lines

dashed lines are not walls

> 20m² (~180ft²)

not paper-colored

completely enclosed by black lines

dashed lines are not walls

> 20m² (~180ft²)

< 3,000m² (~27,000ft²)

not paper-colored

completely enclosed by black lines

dashed lines are not walls

> 20M² (~180ft²)

< 3,000m² (~27,000ft²)

+ attributes (color, dots, crosses...)

process

https://github.com/NYPL/map-vectorizer

try it!

gdal_polygonize.py

generates polygons automagically!

\$ gdal_polygonize.py test.tif -f "ESRI Shapefile" test.shp test

241

C

\$ gdal_polygonize.py test.tif -f "ESRI Shapefile" test.shp test

gdal_polygonize.py

generates polygons automagically! (not really)

we need to optimize the input

differences in resampling

nearest neighbor

cubic

differences in resampling

nearest neighbor

cubic

we need to simplify the output

(for those polygons that we care about)

pts = spsample(polygon, n=1000, type="hexagonal")

x.as = ashape(pts@coords,alpha=2.0)

0

x.as = ashape(pts@coords,alpha=2.0)

lower alpha produces more concave shapes (good) but holes may start appearing (bad)

Ramer–Douglas–Peucker and other point reduction algorithms can be considered

000		autotrace — #3	Mar No.
	bash		
mga\$_			

66,056 polygons produced in one day

(as opposed to years)

but:

adjacency is not being enforced false positives/negatives buildings may also overlap

we need to validate the output

http://buildinginspector.nypl.org

*not included in the paper

2 weeks later...

341,005 flags for 66,055 unique polygons

62,402 polygons with consensus

Yes 84.2% Fix 6.4% No 9.4%

"consensus" = 75%+ agreement of 3+ flags

no sleep till Brooklyn 14k+ more polygons

thank you

mauricio giraldo arteaga NYPL Labs @mgiraldo

NYGeoCon 2013