historical map polygon and feature extractor mauricio giraldo arteaga NYPL Labs
 @mgiraldo

NYGeoCon 2013

background

~120k polygons produced in three years by staff and volunteers

(NYPL ${ }^{-}$volunteers)

building =

building =

not paper-colored

building =

not paper-colored

completely enclosed by black lines

building =

not paper-colored

completely enclosed by black lines
dashed lines are not walls

building =

not paper-colored

completely enclosed by black lines
dashed lines are not walls
$>20 \mathrm{~m}^{2}\left(\sim 18 \mathrm{oft}^{2}\right)$

building =

not paper-colored

completely enclosed by black lines
dashed lines are not walls
$>20 \mathrm{~m}^{2}\left(\sim 18 \mathrm{oft}^{2}\right)$
< 3,000m² ${ }^{2}\left(\sim 27,000 \mathrm{ft}^{2}\right)$

building =

not paper-colored

completely enclosed by black lines
dashed lines are not walls
> $20 \mathrm{~m}^{2}\left(\sim 18 \mathrm{oft}^{2}\right)$
< 3,000m ${ }^{2}$ ($\sim 27,000 \mathrm{ft}^{2}$)

+ attributes (color, dots, crosses...)

process

ค python"

https://github.com/NYPL/map-vectorizer

try it!

gdal_polygonize.py generates polygons automagically!

gdal_polygonize.py

generates polygons automagically!
(not really)
we need to optimize the input

differences in resampling

cubic
nearest neighbor

differences in resampling

cubic
nearest neighbor

we need to simplify the output

(for those polygons that we care about)

$$
0
$$

pts = spsample(polygon, $\mathrm{n}=1000$, type="hexagonal")

pts = spsample(polygon, n=1000, type="regular")

pts $=$ spsample(polygon, $\mathrm{n}=1000$, type="random")

x.as = ashape(pts@coords,alpha=2.0)

0
lower alpha produces more concave shapes (good) but holes may start appearing (bad)

Ramer-Douglas-Peucker and other point reduction algorithms can be considered

66,056 polygons produced in one day
(as opposed to years)

but:

adjacency is not being enforced false positives/negatives buildings may also overlap

we need to validate the output

 http://buildinginspector.nypl.org*not included in the paper

2 weeks later...

341,005 flags for 66,055 unique polygons 62,402 polygons with consensus

Yes 84.2\%
Fix 6.4\%
No 9.4\%
"consensus" $=75 \%+$ agreement of $3+$ flags

no sleep till Brooklyn

$14 \mathrm{k}+$ more polygons

thank you

mauricio giraldo arteaga
NYPL Labs
@mgiraldo

NYGeoCon 2013

