## **GeoWEPP ArcGIS 10.1**

#### **Development Team**

#### Haoyi Xiong – Application leading developer (haoyixio@buffalo.edu)

Jonathan Goergen - Application co-lead developer

Misa Yasumiishi - Webpage developer

Martin Minkowski - GeoWEPP ArcGIS 9.x developer (ESRI Project Engineer now) Chris Renschler - Project Leader

**LESAM Lab Team** 

## Contents

- 1. GeoWEPP introduction
- 2. GeoWEPP for non-structural management
  - Vegetation Buffer Strip (Strip Cropping), Reforestration
- 3. GeoWEPP for structural management

   Culvert (Impoundment), Terrace (Road, parking lot)

## Introduction



## **GeoWEPP** Toolbar



- 1. Delineate channels
- 2. Delineate subcatchments
- 3. Generate climate data for WEPP input
- 4. Generate erosion pattern by accepting watershed
- 5. Show reports from WEPP
- 6. Save project
- 7. Remap with different tolerable value
- 8. Get Hillslope Info
- 9. Change associated land use and soil in a hillslope
- 10. Rerun WEPP to get new erosion pattern
- 11. Load a single hillslope to WEPP
- 12. Go to WEPP to load watershed project
- 13. Save project and exit

#### Example site





#### East of Gowanda, NY

Data are from USDA

#### **Channels & Subcatchment delineation - TOPAZ**

#### Network.tif





1 Critical Source Area & Select outlet point from channel 1 Minimum Source Channel Length



# Subcatchments.tif 21 - Source subcatchment 22 - Right subcatchment 23 - Left subcatchment

🔲 24 - Channel

#### **Generating climate for WEPP- PRISM**

| Climate Selecter                                                                                                        |                        |                                     |                           |                                                                                                        |                          |       |           |                                      |                                |                                |                               |                       |  |
|-------------------------------------------------------------------------------------------------------------------------|------------------------|-------------------------------------|---------------------------|--------------------------------------------------------------------------------------------------------|--------------------------|-------|-----------|--------------------------------------|--------------------------------|--------------------------------|-------------------------------|-----------------------|--|
| Closest Climate Station to Oulet P                                                                                      |                        |                                     |                           | Climate Modification                                                                                   |                          |       |           |                                      |                                |                                |                               |                       |  |
|                                                                                                                         | GOWANDA ST HOSPITAL NY |                                     |                           | limate Paramters for GOWANDA ST                                                                        |                          |       |           | Modified Climate Name Mod GOWANDA ST |                                |                                |                               |                       |  |
| PRISM Modification Window                                                                                               |                        |                                     |                           |                                                                                                        |                          |       | Γ         | 42.48                                | W 78.93                        | °N                             | $\frown$                      |                       |  |
| or modifying CLIMATE at 42.48 N 78.93 W and 860 ft<br>select a value in the annual pritables to move north, south, east |                        |                                     |                           | recipitation o<br>st. or west in                                                                       | r elevation<br>the PRISM | [     | 860       | feet elevati                         |                                | PRISM                          | )                             |                       |  |
| ISM Location: 42.48 N 78.9 W and 1,266 ft elevation                                                                     |                        |                                     | 2.5 min                   | 2.5 minute (approximately 2.5 mi) grid of values. The value<br>in the center is your current location. |                          |       |           | Month                                | Mean<br>Maximum<br>Temperature | Mean<br>Minimum<br>Temperature | Mean<br>Precipitation<br>(in) | Number of<br>Wet Days |  |
| Station Mean<br>Precipitation<br>(in)                                                                                   | Month                  | PRISM Mean<br>Precipitation<br>(in) | Annual Precipitation (in) |                                                                                                        |                          |       | _         | January                              | 32.79                          | 18.50                          | 2.60                          | 15.30                 |  |
| 0.00                                                                                                                    |                        | 0.70                                |                           | 37.97                                                                                                  | 39.37                    | 42.13 | Ň         | February                             | 34.83                          | 18.94                          | 2.05                          | 11.41                 |  |
| 2.60                                                                                                                    | January                | 2.73                                |                           | 38.61                                                                                                  | 42 04                    | 41 39 | -         | March                                | 43.99                          | 25.73                          | 2.58                          | 11.73                 |  |
| 2.05                                                                                                                    | February               | 2.37                                |                           | 00.01                                                                                                  | 12.01                    | 11.00 | -         | April                                | 57.33                          | 36.10                          | 2.75                          | 11.45                 |  |
| 2.58                                                                                                                    | March                  | 2.88                                |                           | 40.94                                                                                                  | 42.74                    | 42.95 | s         | May                                  | 68.92                          | 45.90                          | 3.04                          | 11.27                 |  |
| 2.75                                                                                                                    | April                  | 3.28                                | < W                       |                                                                                                        |                          | E >   | V         | June                                 | 77.43                          | 55.38                          | 3.34                          | 9.29                  |  |
| 3.04                                                                                                                    | May                    | 3.35                                | Elevation (ft)            |                                                                                                        |                          |       |           | July                                 | 81.31                          | 59.87                          | 3.63                          | 9.30                  |  |
| 3.34                                                                                                                    | June                   | 4.03                                |                           |                                                                                                        |                          |       |           | August                               | 79.34                          | 58.32                          | 3.31                          | 9.73                  |  |
| 3.63                                                                                                                    | July                   | 3.63                                |                           |                                                                                                        | 1.010                    |       | September | 72.61                                | 51.95                          | 3.70                           | 9.74                          |                       |  |
| 3.31                                                                                                                    | August                 | 3.93                                |                           | 892                                                                                                    | 1,053                    | 1,243 | Ņ         | October                              | 62.01                          | 42.34                          | 3.02                          | 11.19                 |  |
| 3.70                                                                                                                    | September              | 4.30                                |                           | 971                                                                                                    | 1,266                    | 1,197 |           | November                             | 48.85                          | 33.56                          | 3.48                          | 13.37                 |  |
| 3.02                                                                                                                    | October                | 3.48                                |                           | 1,178                                                                                                  | 1.414                    | 1.446 |           | December                             | 37.10                          | 23.57                          | 2.83                          | 14.88                 |  |
| 3.48                                                                                                                    | November               | 4.07                                |                           |                                                                                                        |                          | s     | s         |                                      | _                              |                                |                               | 1                     |  |
| 2.83                                                                                                                    | December               | 3.84                                | < W                       |                                                                                                        |                          | E >   | V         | Annual<br>Inter 0 to reset) >>       | Clear All (                    | Changes                        | 36.33                         | 138.66                |  |
| 36.33                                                                                                                   | Annual                 | 42.04                               |                           |                                                                                                        |                          |       |           |                                      | 0.00                           | 0.00                           | 0.0%                          | 0.0%                  |  |
| Accept Values                                                                                                           | Return with no Changes |                                     | Hel                       | Help Exit                                                                                              |                          |       |           | Adjust tem                           | perature for elev              | ation by lapse ra              | ite                           |                       |  |

#### Accept watershed to predict erosion

| WEPP/TOP                                                                                                                                                                                                          | AZ Translator — 🗖 🗙                                                                                                                                                                                                                                                                                                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <u>F</u> ile <u>V</u> iew <u>H</u> elp                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                           |
| WEPP Watershed Settings         Change Soil Associations         Change Management Associations         Watershed has 3 Hillslopes and 1 Channel.                                                                 | Name         Management         Soil         % of Area           Hill_21         grass.rot         ny\DANLEY(SIL).sol         32.5%           Hill_22         agriculture\com-fall mo         ny\DANLEY(SIL).sol         18.8%           Hill_23         agriculture\com-fall mo         ny\DANLEY(SIL).sol         48.6% |
| Climate Number of Years Simulation Method Watershed and Flowpaths | <ul> <li>Subcatchments.tif</li> <li>21 Source subcatchment</li> <li>22 Right subcatchment</li> <li>23 Left subcatchment</li> <li>24 - Channel</li> </ul>                                                                                                                                                                  |
| <                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                           |

# Soil erosion prediction - WEPP



1T = 1 ton/hectare/year

#### Subcatchments.tif

- 21 Source subcatchment
- 22 Right subcatchment
- 📕 23 Left subcatchment
- 🔲 24 Channel





#### Watershed Method





## **GeoWEPP** Reports

#### Watershed Method



## GeoWEPP for Nonstructural Management

## **Vegetation Buffer Strip**



How much run-off will vegetation Buffer Strip reduce?

Wetlands

## Vegetation Buffer Strip – Flowpath method



#### **Return Period Analysis - Extreme Event**

#### Load a single hillslope to WEPP



## Vegetation Buffer Strip – Return Period Analysis

|              |                                                                              |                                                                                                            |                                                                                                                                                                   | 100 Year Simulation                                                                                                                                                                                                    | Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|--------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Daily Runoff | Daily Sediment                                                               | Daily Peak Rate                                                                                            | Daily Precipitation                                                                                                                                               | verage Annual Precipitation                                                                                                                                                                                            | 36.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| volume (mm)  | Leaving (t/ha)                                                               | (mm/nr)                                                                                                    | (mm)                                                                                                                                                              | verage Annual Soil Loss                                                                                                                                                                                                | 3.315                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ton/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|              |                                                                              |                                                                                                            |                                                                                                                                                                   | werage Annual Sediment Yield                                                                                                                                                                                           | 1.332                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ton/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 35.7         | 5.7                                                                          | 83.3                                                                                                       | 49.3                                                                                                                                                              |                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 54.1         | 9.9                                                                          | 107.7                                                                                                      | 58.9                                                                                                                                                              |                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 65.2         | 12.4                                                                         | 123.7                                                                                                      | 78.2                                                                                                                                                              |                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 72.4         | 14.5                                                                         | 133.1                                                                                                      | 94.8                                                                                                                                                              |                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 78.5         | 14.5                                                                         | 140.5                                                                                                      | 101.9                                                                                                                                                             |                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 101.2        | 16.0                                                                         | 142.8                                                                                                      | 111.1                                                                                                                                                             |                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|              | Daily Runoff<br>Volume (mm)<br>35.7<br>54.1<br>65.2<br>72.4<br>78.5<br>101.2 | Daily Runoff<br>Volume (mm)Daily Sediment<br>Leaving (t/ha)35.75.754.19.965.212.472.414.578.514.5101.216.0 | Daily Runoff<br>Volume (mm)Daily Sediment<br>Leaving (t/ha)Daily Peak Rate<br>(mm/hr)35.75.783.354.19.9107.765.212.4123.772.414.5133.178.514.5140.5101.216.0142.8 | Daily Runoff<br>Volume (mm)Daily Sediment<br>Leaving (t/ha)Daily Peak Rate<br>(mm/hr)Daily Precipitation<br>(mm)35.75.783.349.354.19.9107.758.965.212.4123.778.272.414.5133.194.878.514.5140.5101.9101.216.0142.8111.1 | Daily Runoff<br>Volume (mm)Daily Sediment<br>Leaving (t/ha)Daily Peak Rate<br>(mm/hr)Daily Precipitation<br>(mm)100 Year Simulation<br>verage Annual Precipitation<br>verage Annual Runoff<br>verage Annual Soil Loss<br>verage Annual Soil Loss<br>verag | Daily Runoff<br>Volume (mm)         Daily Sediment<br>Leaving (t/ha)         Daily Peak Rate<br>(mm/hr)         Daily Precipitation<br>(mm)         100 Year Simulation         Value<br>verage Annual Precipitation         Value<br>verage Annual Precipitation         Value<br>verage Annual Runoff         Value<br>4.06           35.7         5.7         83.3         49.3         313         313           54.1         9.9         107.7         58.9         315           65.2         12.4         123.7         78.2         49.3           72.4         14.5         133.1         94.8         49.4           78.5         14.5         140.5         101.9         101.9           101.2         16.0         142.8         111.1         111.1 |

#### Original

| Return Period<br>(years) | Daily Runoff<br>Volume (mm) | Daily Sediment<br>Leaving (t/ha) | Daily Peak Rate<br>(mm/hr) | Daily Precipitation<br>(mm) |  |  |  |  |
|--------------------------|-----------------------------|----------------------------------|----------------------------|-----------------------------|--|--|--|--|
| 2                        | 36.0                        | 1.6                              | 64.0                       | 49.3                        |  |  |  |  |
| 5                        | 51.5                        | 2.8                              | 92.3                       | 59.5                        |  |  |  |  |
| 10                       | 66.6                        | 4.0                              | 107.6                      | 78.2                        |  |  |  |  |
| 20                       | 81.1                        | 4.6                              | 118.4                      | 94.8                        |  |  |  |  |
| 25                       | 87.4                        | 5.3                              | 119.3                      | 101.9                       |  |  |  |  |
| 50                       | 101.1                       | 7.4                              | 127.6                      | 111.1                       |  |  |  |  |
|                          |                             |                                  |                            |                             |  |  |  |  |

107.6

With Vegetation Buffer Strip

0.0

# Reforestation



**Pre-Fire** 



## GeoWEPP for structural management

#### Impoundment & culvert – Return period analysis

|                                           | <u> </u>                  |          | ÷      |      |             |       |               |       |    |
|-------------------------------------------|---------------------------|----------|--------|------|-------------|-------|---------------|-------|----|
| return_periods.txt - Notepad — 🗖          |                           |          |        |      |             |       |               |       | ×  |
| <u>F</u> ile <u>E</u> dit F <u>o</u> rmat | <u>V</u> iew <u>H</u> elp |          |        |      |             |       |               |       |    |
| Return Period Analysis                    |                           |          |        |      |             |       |               |       |    |
| Return Period                             | Runoff Volume             | Sediment | eaving | Peak | c Runoff Ra | ate I | Daily Precipi | tatio | on |
| (years)                                   | (m^3)                     | (t       | )      | _    | (m^3/sec)   |       | (mm)          |       |    |
| 1                                         | 10039.2                   | 15.4     | 1      |      | 3.0         |       | 43.9          |       |    |
| 2                                         | 16162.3                   | 24.      | 9      |      | 4.7         |       | 49.8          |       |    |
| 3                                         | 18805.4                   | 32.      | 3      |      | 5.4         |       | 54.1          |       |    |
| 5                                         | 27867.9                   | 52.      | 5      |      | 7.6         |       | 59.6          |       |    |
| 6                                         | 30922.9                   | 53.      | 5      |      | 8.3         |       | 69.9          |       |    |
| 10                                        | 36539.9                   | 89.      | 2      |      | 9.7         |       | 109.5         |       |    |
| 15                                        | 50342.6                   | 89.4     | 1      | L    | 12.9        |       | 111.1         |       |    |

Tells the work of the section of the

Read return period report from GeoWEPP for the watershed

## Terraces / Roads / Parking lot



## **Culvert Tool for flow direction**



Since culvert under road change the flow direction, **DEM** may record elevation of the road, which is above culvert and leads to incorrect flow direction.

Noted that DEM resolution may greatly influence flow direction

5m DEM for another study site Developed by Brian Clarkson

#### Stream Customization – GeoWEPP Extension



Select a point in channel to specify where the channel start Make sure that hydrology in model is correct for further process.

#### Stream Customization – GeoWEPP Extension

ArcMap Hydrology Tools



**GeoWEPP** with Customization

GeoWEPP without customization







#### http://geowepp.geog.buffalo.edu/



## References

#### • GeoWEPP:

- Renschler, C.S. (2003) Designing geo-spatial interfaces to scale process models: The GeoWEPP approach. Hydrological Processes 17, p.1005-1017.
- WEPP:
- Laflen, J.M., L.J. Lane, and G.R. Foster. 1991. WEPP—a next generation of erosion prediction technology. Journal of Soil Water Conservation 46(1): 34–38.
- Flanagan, D.C., and M.A. Nearing (eds.). 1995. USDA-Water Erosion Prediction Project (WEPP) Hillslope Profile and Watershed Model Documentation. NSERL Report No. 10, National Soil Erosion Research Laboratory, USDA-Agricultural Research Service, West Lafayette, Indiana.
- GeoWEPP Applications:
- Flanagan, D.C., J.R. Frankenberger, T.A. Cochrane, C.S., Renschler, and W.J. Elliot (2013) Geospatial Application of the Water Erosion Prediction Project (WEPP) Model. *Transactions of the ASABE* (in press)
- Renschler, C.S., and D.C. Flanagan (2008) Site-Specific Decision-Making Based on GPS RTK Survey and Six Alternative Elevation Data Sources: Soil Erosion Prediction. *Transactions of the ASABE* 51(2):413-424.[2009 ASABE Superior Paper Award]
- Renschler, C.S., and Lee, T. (2005) Spatially distributed Assessment of Short- and Long-term Impacts of Multiple Best Management Practices in Agricultural Watersheds. Journal of Soil and Water Conservation 60(6):446-456.
- Renschler, C.S., Flanagan, D.C., Engel, B.A., Kramer, L.A., and Sudduth, K.A. (2002) Site-Specific Decision-Making Based on GPS RTK Survey and Six Alternative Elevation Data Sources: Watershed Topography and Delineation. Transactions of the ASAE 45(6):1883-1895.
- Renschler, C.S., and J. Harbor (2002) Soil erosion assessment tools from point to regional scales The role of geomorphologists in land management research and implementation. Geomorphology 47, p.189-209.