GPS Workshop

NY GeoCon

Saratoga Springs, New York

Presented by: Jonathan Cobb Waypoint Technology Group, LLC

November 12, 2013

Topics

Cosmic Day

≻ The B.Y.O.D. Revolution

➢ GPS Infrastructure Developments

Show Us Your Stuff

Definitions

<u>B.Y.O.D.</u> – Bring Your Own Device **GPS** - Global Positioning System **GLONASS** – Russian "GPS" **<u>GNSS</u>** - Global Navigation Satellite System GNSS = GPS + GLONASS**SBAS** = Satellite Based Augmentation System **RTN** = Real-Time Network

Cosmic Day

Cosmic Day = 11-12-13

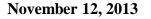
November 12, 2013

The B.Y.O.D. Revolution

B.Y.O.D – What Does It Mean?

Bring Your Own Device:

Companies leveraging employee-owned, connected, spatially-aware hardware devices for data collection, communication, analysis, and decision-making.


B.Y.O.D – What Does It Mean?

- "Non-professional" workers can contribute to spatial data collection
- Mixed "fleets" of hardware becoming increasingly common
- Variable accuracy
- Utilization of "on-demand" and/or "pay-as-you-go" solutions

B.Y.O.D – Pros

- Reduced Employer Hardware Costs
- Device-Agnostic (Typically)
- Immediate User Familiarity = Reduced Training Costs
- Access to a Vast "Army" of Contributors
- Software / App Distribution & Update Ease (via Cloud)
- Data Definition Distribution & Update Ease (via Cloud)

B.Y.O.D – Cons

- Data security
- Data integrity
- Data ownership
- Platform/hardware inconsistencies
- Software / App availability and compatibility
- Technical support responsibility
- Hardware replacement issues

Software / App Examples

- ArcGIS for Windows Mobile (ESRI)
- Collector for ArcGIS (ESRI)
- doForms
- Field2Base (Fulcrum)
- GeoJot (Geospatial Experts)
- GISRoam (Cogent3D)
- Myriad Private / Third Party Solutions
- Terra Flex (Trimble)

The TerraFlex Solution

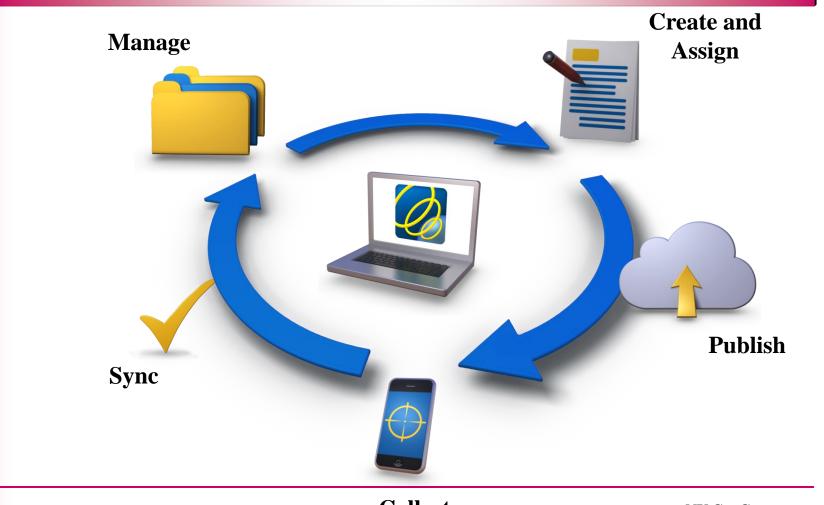
- <u>Cloud</u>: Data, Project, and User Management
 - Form template definition and management
 - Project creation and assignment
 - User management
 - Data management and import/export

- <u>Mobile</u>: Data Collection and Syncing
 - Form fulfillment
 - Dynamic syncing

Terra Flex

Business Model

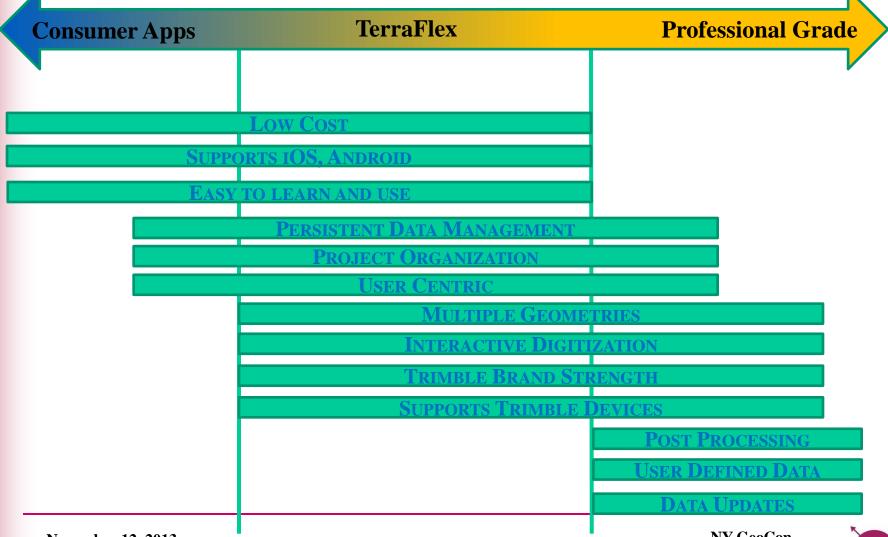
- Free Mobile App
- Back-end / Cloud Subscription
- On-line Help and Support


Trimble TerraFlex Basics

Trimble TerraFlex Workflow

Terra Flex - Features/Benefits

Customer Need	<u>Feature</u>	<u>Benefit / Value</u>
Different data collection needs	Dynamic form template creator: • Text • Numeric • Multi-select • Single select	• Fast, easy, efficient
Field workers on a variety of devices, sometimes even their own	Supports iOS, Android, Windows Embedded Handheld	• Consistent, easy-to-use, confidence in the data
Different field workers work on different projects.	Projects: Manage your data and users	Organized dataFocused crews



Terra Flex - Features/Benefits

Customer Need	<u>Feature</u>	<u>Benefit / Value</u>
Getting all of the field data back into the office and entered in	Field-Office syncing	Faster and more accurate
Field users need to work in remote areas	Offline capabilities	Uninterrupted productivity
Data portability	Import and export with common formats like Esri ArcGIS XML schema, CSV, and Google KML	Interoperability
Don't have resources to manage another system	Managed, hosted services	Cost-efficient, immediate productivity

What Sets TerraFlex Apart?

November 12, 2013

NY GeoCon

How Do I Get It on My Mobile Device?

Terra Flex

GPS Infrastructure Developments

Differential Correction

Let's review...

What is it??

.....the process of correcting GPS data collected by a user, with data recorded simultaneously at a base station, in order to <u>improve accuracy</u>.

Differential Correction

Two methods:

Post-processed

➢ Real-Time

We'll focus on Real-Time....

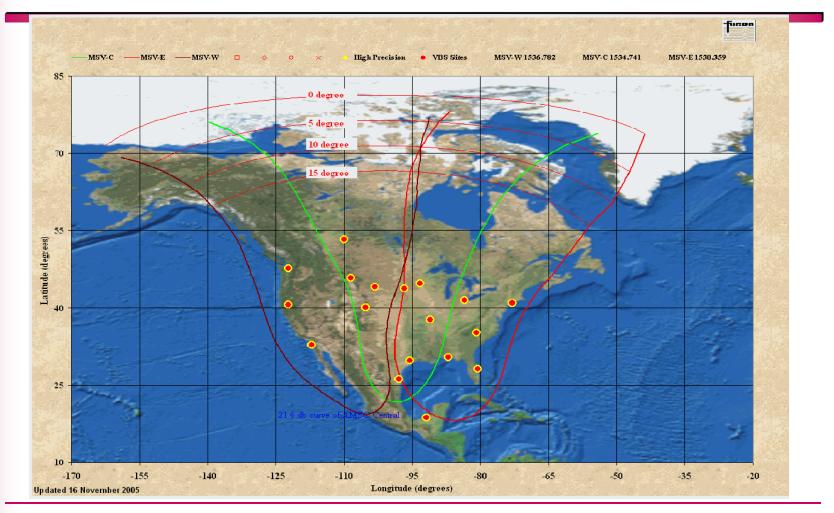
Real-time Differential GPS

Benefits of Real-time Functionality

- Navigation
- Eliminate post-processing
- Locate proposed features
- Relocate existing features
 - that are broken and need repair
 - update GIS attributes
 - prior to construction

Real-Time DGPS Sources

- Subscription Satellite-based Corrections
- Radio Beacon (Ground-based) Correction
- Satellite-Based Augmentation Systems (SBAS)
- Regional/Statewide RTN's


Subscription Satellite-based Corrections

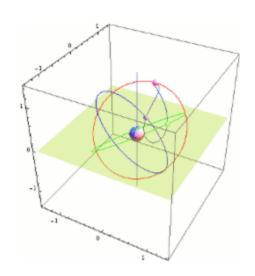
Operated by Private Enterprise (Omnistar)

- Space-based service
- Line-of-sight required
- Fee-based business model
- Significant service area (i.e. continental)
- Variable accuracy, and priced accordingly

OmniStar Coverage

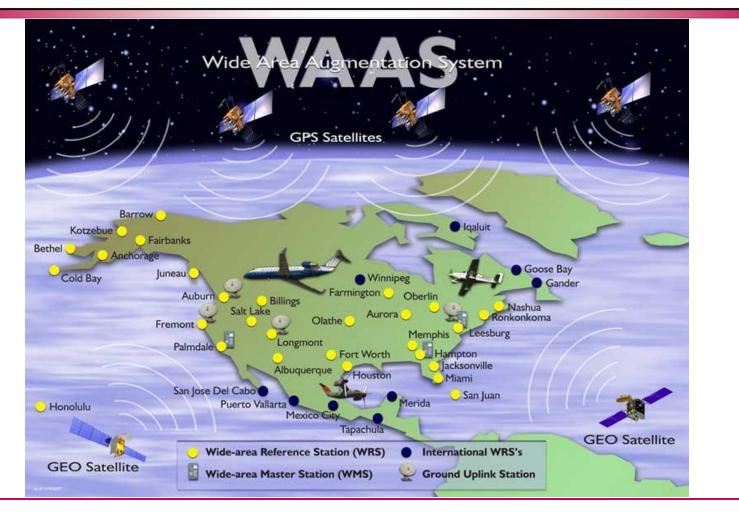
November 12, 2013

OmniStar Services


Worldwide Differential GNSS Services OmniSTAR • Accuracy • Reliability • Customer Care		
Service	Horizontal Accuracy	
VBS	+/- 1-meter	
XP	+/- 15 cm	
HP	+/- 10 cm	
G2	+/- 15 cm	

Satellite-Based Augmentation Systems (SBAS)

- Wide Area Augmentation System (WAAS) FAA
- European Geostationary Navigation Overlay Service (EGNOS)
- Quasi-Zenith Satellite System (QZSS) Japan

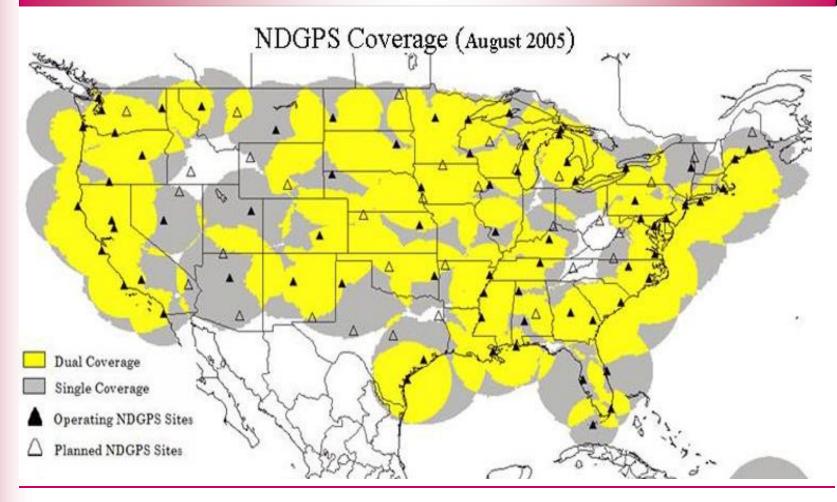

Satellite-Based Augmentation Systems (SBAS)

Operated by Federal Aviation Administration

- Space-based service
- Line-of-sight required
- Geostationary
- Free service
- Significant service area (i.e. continental U.S.)
- Limited to sub-meter accuracy
- Future not in doubt

WAAS Network

November 12, 2013


Radio Beacon

Operated by U.S. Coast Guard

- Ground-based service
- Line-of-sight NOT required
- Free service
- Limited service area
- Limited to sub-meter accuracy
- Additional hardware required
- Future is bleak

National USCG Beacon Coverage

NY GeoCon

Real-Time Networks

- Networks of reference (base) stations
- Public or private (free/subscription)
- Regional or state-wide (national in Europe)
- Serve post-processing and real-time DGPS purposes
- Often serve dual-frequency survey-grade (RTK) <u>and</u> mapping-grade (code) corrections

NYSNet Spatial Reference Network

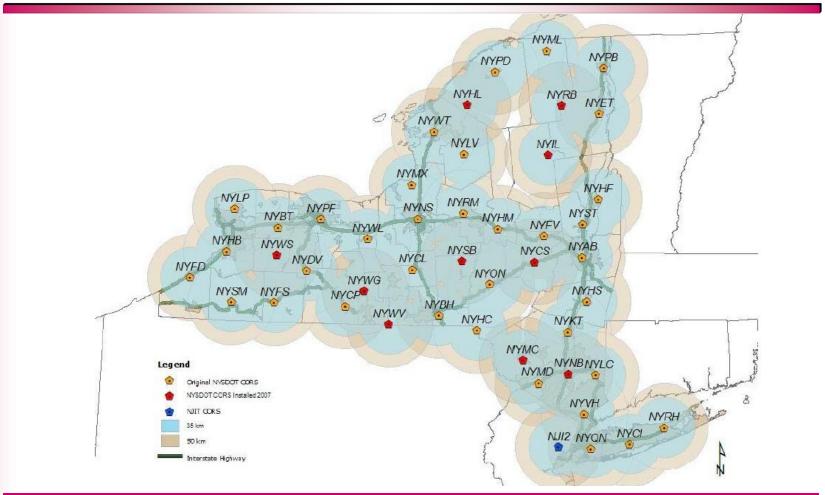
- Operated by New York State DOT
- Reference stations available via NGS CORS website for post-processed DGPS (5-second data)
- Internal data available at 1-second epoch rate
- Streaming broadcast via TCP/IP (cell phone/modem) of RTK (real-time kinematic) corrections

NYSNet Spatial Reference Network

Summer '13 Status:

- 46 dual-frequency RTK corrections yield 1
 2 cm horizontal positions, state-wide
- Also broadcasting code phase DGPS stream for Mapping/GIS users (sub-meter)
- Service is free & available in areas w/cell phone coverage

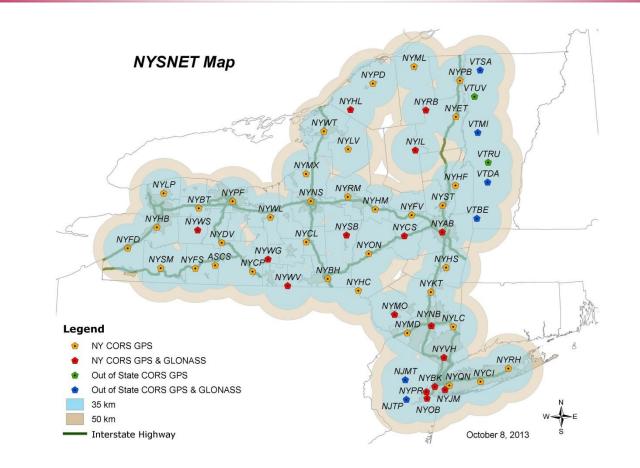
NYSNet Spatial Reference Network


- User must sign data use agreement
- NYSDOT provides user name and password
- NYSDOT monitoring of usage (e.g. duration, location)

Waverly, New York

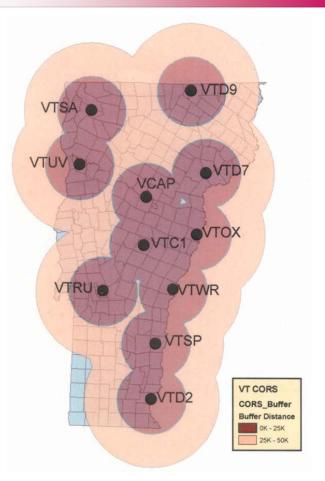
Base Stations Serving New York State GPS Users

NY GeoCon


NYSNet Spatial Reference Network

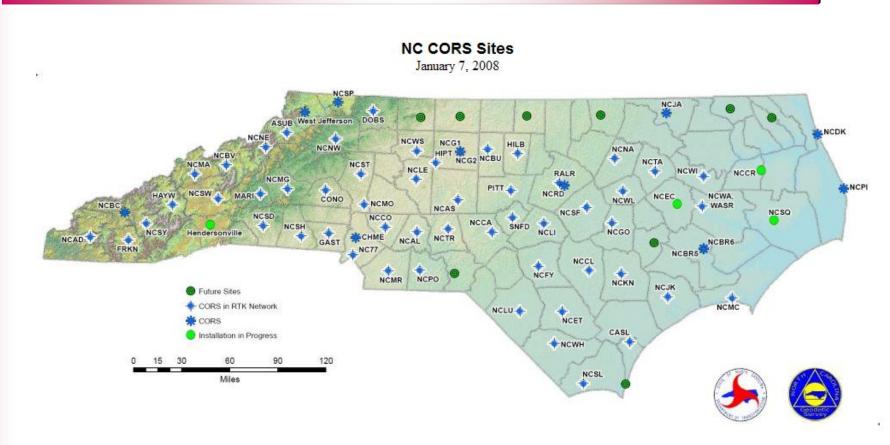
Fall '13 Update:

- GLONASS corrections added at 15 reference stations
- GLONASS corrections currently availability only via RTN
- Complemented by out-of-state (VT, NJ) reference stations


GLONASS Support

Vermont AOT

- 11 (13) reference stations
- GPS and GLONASS
- 45-day file storage
- Free


NY GeoCon

Washington State Reference Network

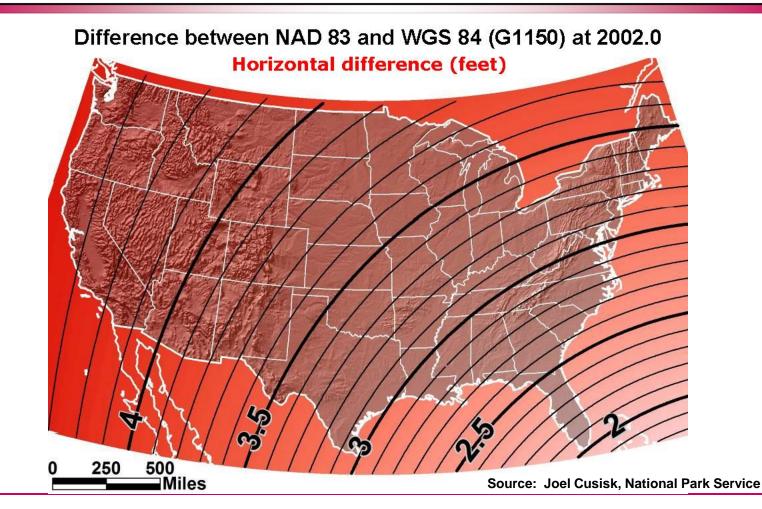
North Carolina Dept. of Environment & NR

Other GPS Reference Networks

- Ohio
- Michigan
- South Carolina
- Texas
- Louisiana
- California Central Valley

- Minnesota
- Georgia
- Florida
- Boston Metro
- Norfolk, VA
- Washington DC
 Metro

NY GeoCon


Datum References

- GPS: WGS 84
- OmniStar VBS (North America): NAD 1983
- OmniStar XP & HP: ITRF 2000
- WAAS: ITRF 2000
- USCG Beacon Network: NAD 1983
- NYSNet: NAD 1983

• What datum is your GIS data referenced to?

Why Should I Care?

November 12, 2013

Image Reference

Summary

Summary

- Make Something Cosmic Happen Today
- The B.Y.O.D. Revolution is Real Embrace It!
- Differential Correction (DGPS) Infrastructure Networks are Proliferating – You Have Options

Thank You!

What's New?

GeoExplorer 7X

• Image

GeoExplorer 7X

• New Features

GeoExplorer 7X

• Benefits

Connections and Convergence: New Products

- GeoExplorer 6000/Floodlight
- Trimble Municipal Reporter
- Trimble Assistant

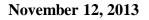
GeoExplorer 6000/Floodlight

GPS Data Collection for GIS

Issue Focus: Heavily Canopied and Urbanized Areas

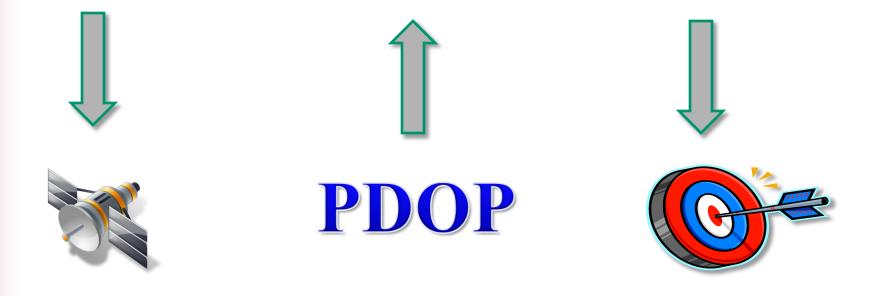
Historic Approaches/"Remedies"

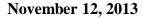
Heeting the Challenge Using "Floodlight"



Heavy Canopy and Urban Areas

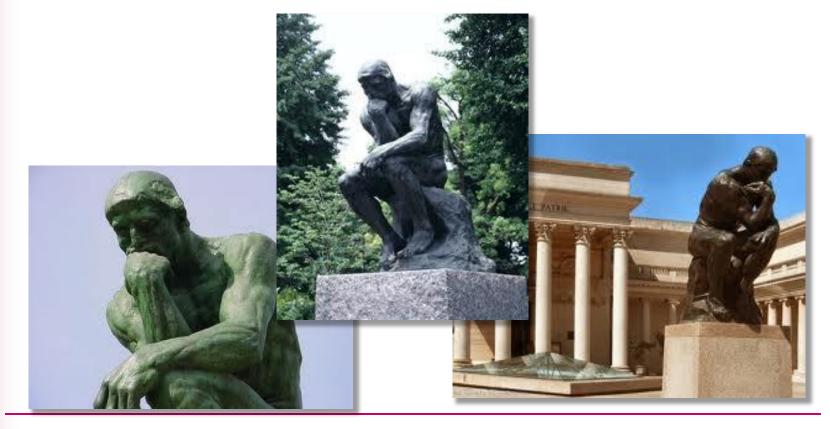
In what types of environments do GIS professionals operate?





Heavy Canopy and Urban Areas

What, specifically, is the problem with GPS data collection in "hostile" environments?


Limited GPS Satellite Availability

✤ Wait..... and wait..... and wait..... and wait.....

Deferral/Come Back Later

November 12, 2013

November 12, 2013

NY GeoCon

November 12, 2013

Floodlight Shadow Reduction Technology

 More positions and better accuracy in obstructed GNSS conditions

NY GeoCon

Floodlight Shadow Reduction Technology

Floodlight - Meeting the Challenge

Increase satellite availability

Stable satellite tracking

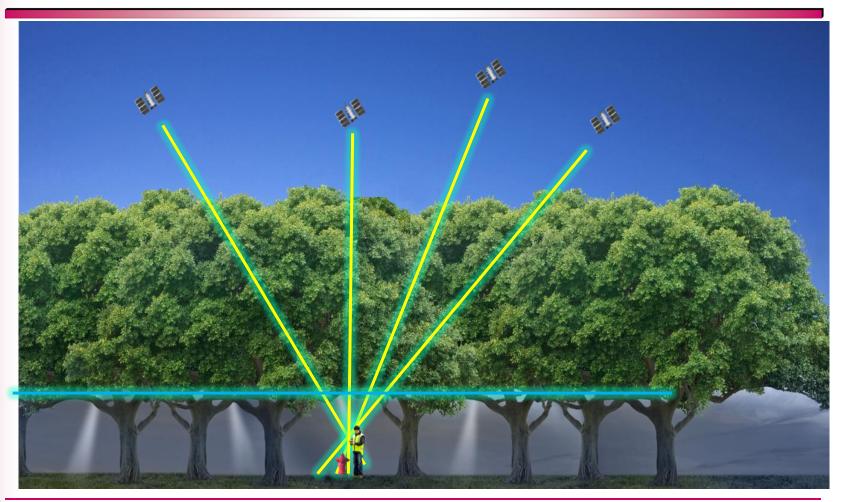
 Improve accuracy and prevent position outages in hostile GNSS conditions

Floodlight Shadow Reduction Technology


Floodlight - Meeting the Challenge

- Multi-constellation (GPS + GLONASS)
- Advanced tracking algorithms and filters
- Altitude-constrained positioning

GPS + GLONASS



November 12, 2013

NY GeoCon

GPS + GLONASS

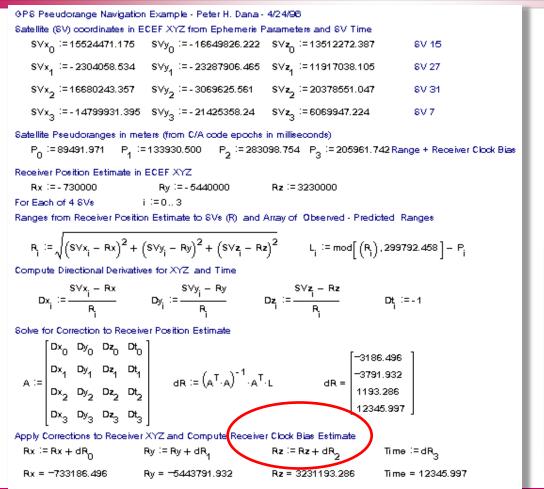
November 12, 2013

Tracking and Algorithms

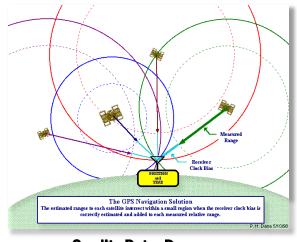
NY GeoCon

November 12, 2013

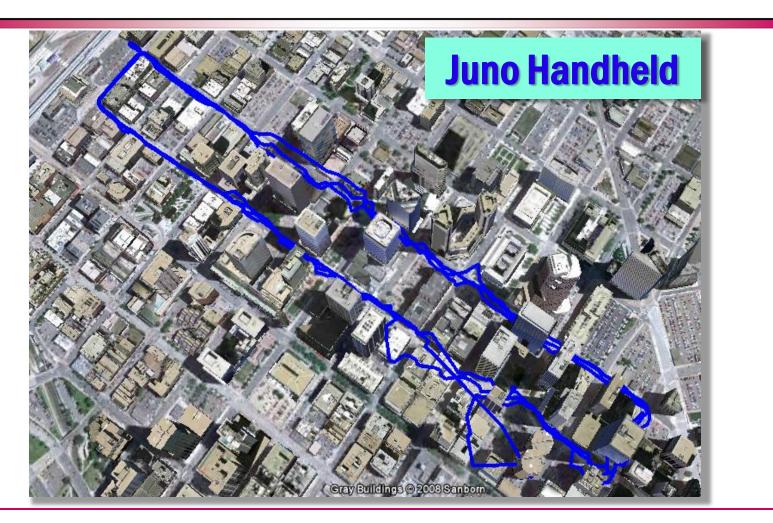
Tracking and Algorithms


$$x = \sqrt[3]{\left(\frac{-b^3}{27a^3} + \frac{bc}{6a^2} - \frac{d}{2a}\right) + \sqrt{\left(\frac{-b^3}{27a^3} + \frac{bc}{6a^2} - \frac{d}{2a}\right)^2 + \left(\frac{c}{3a} - \frac{b^2}{9a^2}\right)^3}} + \sqrt[3]{\left(\frac{-b^3}{27a^3} + \frac{bc}{6a^2} - \frac{d}{2a}\right)^2 + \left(\frac{c}{3a} - \frac{b^2}{9a^2}\right)^3} - \frac{b}{3a}}.$$

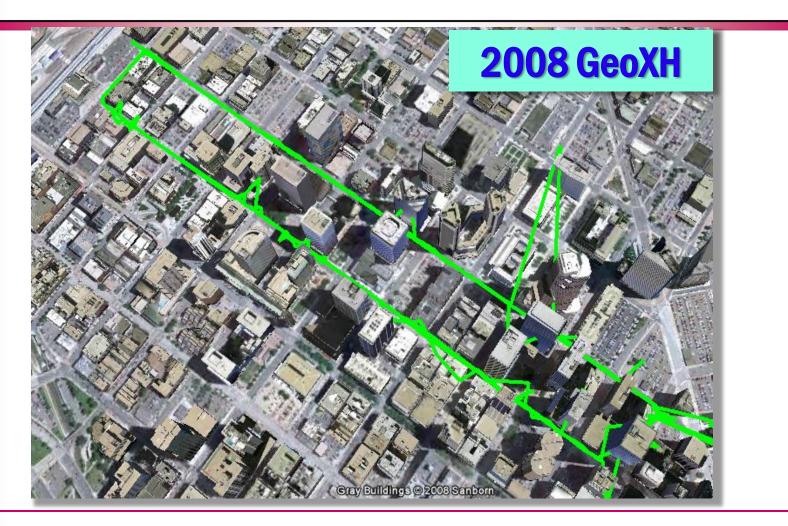
November 12, 2013


NY GeoCon

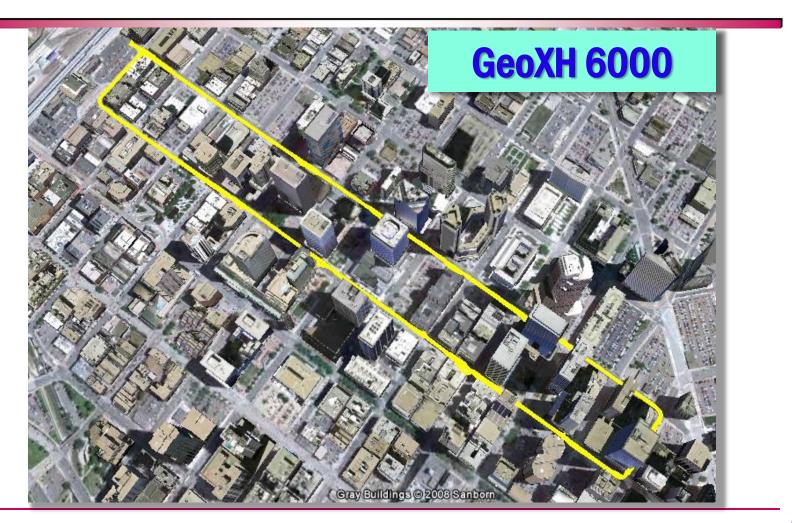
Altitude-constrained Positioning



Integrated Barometric Altimeter

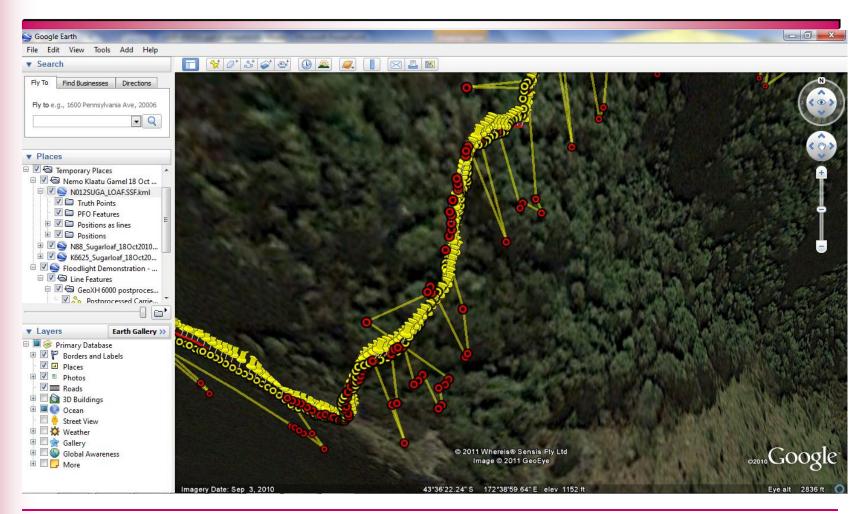


Credit: Peter Dana



November 12, 2013

November 12, 2013



Floodlight

New Zealand

Floodlight Examples

• New Zealand

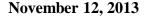
MGIS Support Docs\6000 GeoExplorer\Floodlight Demonstration - Christchurch.kmz

• Denver

MGIS Support Docs\6000 GeoExplorer\Floodlight Demonstration - Denver.kmz

GeoExplorer XH 6000

Floodlight Enabled


Integrated Digital Camera

Integrated 3G Modem (optional)

"Field-swappable" Battery

Benefits

Speed

Accuracy

Simplicity

Frustration Reduction/Elimination

Limitations

GPS Base/Reference Station Infrastructure

> WAAS - GPS only

US Coast Guard Beacons – GPS only

Legacy reference station networks - GPS only

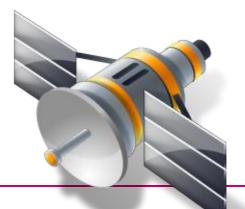
NY GeoCon

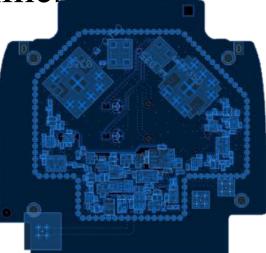
November 12, 2013

Trimble GeoExplorer 6000 series

- Handheld computer with integrated high accuracy GNSS
- Exceptional GNSS performance in difficult environments
- A completely integrated data capture solution
- Optimized for mapping and GIS data collection activities
- Windows Mobile[®] versatility

Configurations & Receiver Options


GeoXH [™] standard edition	GeoXTTM standard edition
GeoXH 3.5G edition	GeoXT 3.5G edition
(adds cellular modem)	(adds cellular modem)


GeoXH receiver options	GeoXT receiver options
NMEA output upgrade	NMEA output upgrade
	Floodlight Technology upgrade

Integrated High-Accuracy GNSS System

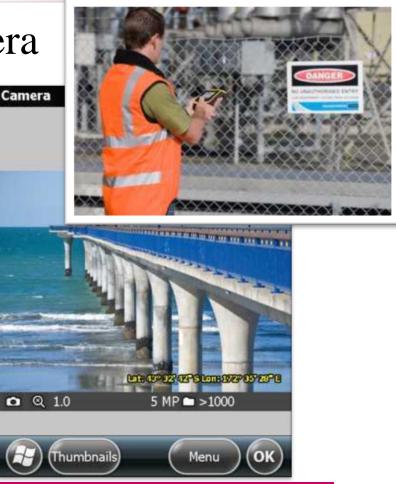
- Decimeter H-StarTM accuracy in the hand
- Available in real time and after postprocessing
- Fast accuracy and at longer baselines
- Better precision estimates

Integrated 3.5G cellular data modem

• Internet connectivity in the field

Integrated 5 megapixel autofocus camera

• Capture photo attributes directly in the field without additional equipment



Camera specifications

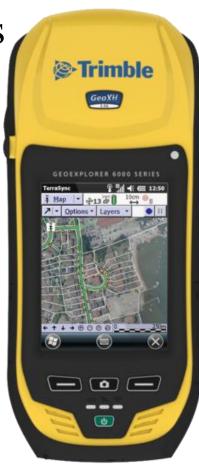
- 5 megapixel autofocus camera
 - 7-stop exposure adjustment
 - 6 resolution options
 - 3 JPEG quality modes
 - Macro mode (20 cm)
 - Geotagging capable
 - VGA video with audio

4.2 inch sunlight readable display

• Crystal clear maps and forms

Long-life field-swappable battery

- Up to 11 hours operation on a single charge
- Field swappable without shutting down



Powerful computing and rugged hardware

• Efficient operation in all conditions

November 12, 2013

GNSS receiver specifications

Receiver	Trimble Maxwell [™] 6 GNSS chipset
Antenna	GeoXT models: L1, GeoXH models: L1/L2
Channels	220 channels
Systems	GPS, GLONASS*, SBAS
GPS	L1C/A, L2C, L2E
GLONASS	L1C/A, L1P, L2C/A, L2P
SBAS	WAAS/MSAS/EGNOS
Update rate	1 Hz
Time to first fix	45 s (typical)
NMEA-0183 output	Optional
RTCM support	RTCM2.x/RTCM3.x
CMR support	CMR/CMRx/CMR+

NY GeoCon

GNSS accuracy specifications

Real Time		
H-Star (GeoXH only)	10 cm + 1 ppm	
DGNSS Code	75 cm + 1 ppm	
SBAS (WAAS/EGNOS/MSAS)	Submeter	
Postprocessed		
H-Star (GeoXH only)	10 cm + 1 ppm	
GeoXT Postprocessed Carrier	after 20 minutes: 10 cm + 2 ppm after 10 minutes: 20 cm + 2 ppm	
GeoXT/GeoXH Postprocessed Carrier	after 45 minutes: 1 cm + 2 ppm	
Code/SBAS (WAAS/EGNOS/MSAS)	50 cm + 1 ppm	

Floodlight Satellite Shadow Reduction Technology

Increase satellite availability Multi-constellation Positioning (GNSS)

Stabilize acquisition and tracking Advanced tracking algorithms and filters

Improve accuracy and yield Altitude-constrained positioning

Cellular, Wi-Fi, and Bluetooth

Cellular (optional)

- Siemens HC25 HSDPA cellular modem
- Quad band GPRS/EDGE
 - 850/900/1800/1900 MHz
- Tri-band UMTS/HSDPA
 - 850/900/2100 MHz

Wi-Fi

• 802.11b/g

Bluetooth

- Version 2.0 + EDR
- Supports SPP, DUN, PAN, OPP,

NY GeoCon

- <u>Remote</u> support technology
- Supports multiple operating systems Windows CE/Pocket PC, Windows Mobile 5/6, Linux, Windows Desktop, Mac
- Drag and drop file transfer
- VOIP
- Session Recording/Playback
- Secure/Encrypted

- Applications
 - Technical support/trouble shooting
 - Training
 - Software/firmware upgrades
 - Sales demonstrations

NY GeoCon

November 12, 2013

- Candidates
 - Government agencies
 - Construction contractors / land surveyors
 - Utilities
- Benefits
 - Reduce technical support costs
 - Save time / improve productivity
 - Record and replay for distribution

NY GeoCon

Summary

Leveraging Public Data Sources for Mobile GIS - Benefits

- Minimize pre-field prep time no need to identify correct ortho tiles in advance
- Improved GPS accuracy (closest base station)
- Built-in DGPS redundancy (USCG and WAAS still available)
- "Instant" gratification/validation
- Potential to migrate to bi-directional, realtime, data flows

Leveraging Public Data Sources for Mobile GIS - Limitations

- Connectivity (e.g. cell phone signal)
- Bandwidth
- Technological complexity (i.e. integrating multiple hardware and software components)
- Over-reliance

Summary

- Technological Convergence, including:
 - <u>Cell Phone Service</u>
 - <u>Bluetooth</u>
 - <u>GPS</u>
 - <u>DGPS</u>
 - <u>Web Services</u>
 - <u>Internet</u>
- Data feeds are free (generally)
- Web Map Services Expanding
- Differential Correction (DGPS) Infrastructure Networks Growing Rapidly

Questions?

Contact Information:

Jonathan Cobb

jcobb@waypointtech.com

NY GeoCon

November 12, 2013

